
DSC 2001 Proceedings of the 2nd International
Workshop on Distributed Statistical Computing

March 15-17, Vienna, Austria
http://www.ci.tuwien.ac.at/Conferences/DSC-2001

K. Hornik & F. Leisch (eds.) ISSN 1609-395X

Embedding S in Other Languages and

Environments

Duncan Temple Lang ∗

Abstract

Interfaces to other languages such as C and Fortran have provided S users
access to a vast collection of existing software. Adding general interfaces to
other languages allows us to access the software developed for those languages.
In addition to providing S users with easy and immediate access to the func-
tionality in languages such as Java, Python and Perl, these interfaces also
work in reverse, providing users of those environments with access to S. This
allows us to export high-quality statistical software to a larger and broader
audience than data analysts and statisticians and have a greater impact on
the way statistical methodology is used.

In this talk, we illustrate how embedding R can be used in a variety of
different applications. We focus on a single example – dynamic and interactive
report generation. This shows how we can make use of S directly from within
Perl, XML and XSL, Netscape and JavaScript and the Postgres database
server. As well as widening the audience, embedding S within these languages
allows S programmers more flexibility in choosing the correct tool for any
particular task.

Much of the flexibility and expressiveness of this inter-language mechanism
comes from

• using references rather than copying data between the systems, and

• using direct function calls rather than evaluating strings in the other
system.

Interfaces to each of the languages and systems mentioned is made avail-
able via an Omegahat package for R.

∗Bell Labs, Lucent Technologies

New URL: http://www.R-project.org/conferences/DSC-2001/

http://www.R-project.org/conferences/DSC-2001/

Proceedings of DSC 2001 2

1 The Goal of Integration

Programmers frequently choose to use a particular language for a task simply be-
cause interfacing to just one facility developed in that language is too hard. Instead,
they use an often sub-optimal environment for programming the remainder of the
task simply to make using just one specific aspect feasible. This is essentially al-
lowing the tail to wag the dog and leads to poor software. The code is unnaturally
complex, non-extensible, non-reusable and maintainability is severely challenged.

A very large audience is excluded from domain-specific or specialized software
such as S, Matlab simply because the overhead of learning the philosophy, syntax
and nuances of these languages are excessive for casual use. Instead, this type
of potential user requires facilities that are in her familiar, day-to-day software
environment, where she has managed and organized her data.

Both of these situations would be greatly improved if we could use the function-
ality developed in one language directly and easily from within another. We would
like to be able to express what we want done (i.e. the functionality) in whichever
language is appropriate and ignore the details of integrating the functionality across
the different systems.

As part of the Omegahat project, we have developed a simple but general ap-
proach to this seamless connectivity for a variety of different languages, including
Java, Perl, Python, JavaScript, SQL and XSL (the eXtensible Stylesheet language).
Each of these uses the same general facilities for embedding functionality developed
in one language (e.g. S) into other languages and applications. The result is that
software the each of us develops is available to a wide audience of users of other
systems. Additionally, it gives us more flexibility in developing new code. We can
choose the most appropriate environment for programming each task while seam-
lessly accessing the necessary functionality in the different systems in which each
was developed.

This concept of invoking functions in other languages and applications is familiar
to all of us in different forms. The S language provides interfaces to C and Fortran
and these languages can access S functionality. Distributed computing via CORBA,
Java’s Remote Method Invocation or Microsoft’s DCOM is another example.

In this paper, we will talk about a simpler and more direct way of accessing
functionality in different systems. Specifically, we will consider just a single process
and treating the R engine as a C level library which can be loaded into other
applications. This idea of running the R interpreter within another application
is usually called embedding. With a general and dynamic approach to invoking
functions in S and converting data structures as references between the two systems,
we can make all S functions available to the other system as if they were local to
that system.

2 An Example: Report Generation

We will introduce a lot of different technologies in this presentation. The way in
which we use each of them shares a common theme, namely accessing statistical

Proceedings of DSC 2001 3

functionality from other applications as part of a larger task. To try to simplify the
presentation, we will use just a single example or scenario throughout the discus-
sion. The idea is report generation and we will focus on creating and displaying a
reasonably simple report to potentially different groups of readers. The report is to
be constructed daily with newly collected data. The contents of the report consists
of text, tables and graphics. The content of each of these elements is dynamically
generated when the report is created. We also want parts of the report to be in-
teractive, allowing readers to explore the data and results in their own way, limited
by the controls that we give them. Finally, we will discuss how the interactive com-
ponents can offload computations by having them done in a database. This allows
the client’s viewer to be essentially a “thin” client.

In the presentation, we will show how we can use, and even need, a myriad of
different programming languages and tools. We use S, Perl, XML, XSL, Xalan,
HTML, JavaScript and Java. Each of these is well-suited to doing a particular task
in the report generation and rendering. Most importantly, however, we show how
these tools can take advantage of an embedded R interpreter to access high quality
statistical functionality and graphics in order to provide the specific content.

Report generation is an example of where we typically use ad hoc methods to
create a document that contains text and different numerical and graphical output
generated in data analysis application. We sometimes do all the formatting and
string manipulation in S simply because that is where the data and statistical
methodology lives. Another approach is to use Perl or some such language which
is better suited to text manipulation but then we have to invent ways to access the
output from the statistical environment.

2.1 Chip Manufacturing

So far, our example of report generation is still general. We will focus on a real task
involving the creation of computer chips in a wafer fabrication plant. In a previous
project, the goal was to create summary reports for engineers so that they could
explore the results from each day’s production process, allowing them access to the
different levels or resolution of details The organization is simple. For each day, we
have a collection of approximately 150 “lots”. Within each lot, there are on the
order of 50 wafers and each of these contain numerous chips. Each of these chips is
tested at the end (or during) the production process and either passes or is assigned
a failure type. The engineers are interested in the proportion of good chips that are
created for each wafer and each lot. They can examine the spatial patterns of the
failures to try to understand and correct difficulties in the production process.

The report that we generate is intended to be hierarchical, presenting at the
top-level just a basic summary of the day’s activities. These summaries are

• a paragraph providing this particular day’s results, detailing the number of
lots, and how many passed the quality control levels and

• a histogram giving the distribution of yields across the lots.

Proceedings of DSC 2001 4

• a table listing each of the different lots and the average yield of the wafers
within that lot.

The reader can delve further into the details and interactively examine each
lot and the distribution of its failure types. This is done with both numerical and
graphical summaries. The simplicity is appealing from a human-interface perspec-
tive, but is also surprisingly effective in identifying interesting features quickly.

The content of the first page of the report is dynamically generated from the
data for the day in question. It is however, essentially static after it has been
created. The histogram and numbers remain fixed. The interactivity comes in the
subsequent pages and allow the reader/user to dynamically update the contents of
the display. These two types of dynamic content are different stages of the process
and require different tools. One is done off-line and the other directly within the
browser.

The stages involved in the report generation and rendering are shown in Figure
1.

XML File

XSL File

S−xslt HTML File
R

Java

Forms

Netscape

Tcl/Tk

Javascript

Generation Rendering

Figure 1: The stages in the report generation and rendering

We us the RWafers library to perform the statistical analysis and generate the
output. The overall architecture illustrates how easy it is to use existing software
in new ways. The work on the wafer library was originally done by David James
and Mark Hansen. It was ported to R by David and Vadim Kutsky.

Proceedings of DSC 2001 5

3 Generating the Report

We start by focusing on the first stage in the creation of the report, namely the
fixed or static summary page. Ideally, we want the author of the report to be able
to specify what components should appear and where, that is the layout. They do
this by referencing the output of computations that are to be performed in other
languages (e.g. S) when the document template is converted to an actual document
or instance and using a language like TEX or HTML to specify the layout.

There are several ways to arrange for executing the commands and substituting
or replacing these with the output from those commands. We start by considering
how we might do this in Perl which might seem to be an obvious tool.

3.1 Using Perl

Perl’s regular expression matching and powerful text processing facilities make it a
good choice for iterating over the contents of the document looking for elements that
are to be executed. For each of these elements that it identifies, it must determine
the appropriate command and language in which to invoke it. Then it must execute
the command and put the return value into the text of the document being created.

It is reasonably straightforward to specify this setup in Perl. The author of
the report would use a special tag to identify code sections in the document. For
example, we might identify S code as

@S: summary(x)@

As Perl processes the document, using regular expressions, it would extract the
expression summary(x) and evaluate it in S and insert the result as text into the
document.

A difficulty arises in executing the commands in S. We can do this by calling R
as a sub-process and having it write the results on standard output. There are two
drawbacks to this. One is that we must restart R for each of the computations within
the document. Of course, this is inefficient, but it can also make computations quite
complicated. The values used in one computation are not immediately accessible
to subsequent computations as they are in a different session. Each code section
must arrange to assign those values permanently to make them available in future
sessions. Also, the results can only be returned as strings and this is a significant
restriction. S must generate the appropriate text to be displayed in the report and
so must do significant string manipulation. It is also hard to ensure consistency as
other languages can also be used.

A more efficient, flexible and convenient mechanism is to embed R within Perl
and allow the Perl code to evaluate S commands and access S objects directly
within the same process. The results of evaluating the S commands can be returned
as regular Perl objects or references to more complex S objects. Perl can then
manipulate these to format them appropriately and insert them into the text of
the document. Assignments from one command remain available for subsequent
commands but not future sessions. We avoid the overhead of starting R for each
command. The new versions of the RSPerl package [6] allows this embedding.

Proceedings of DSC 2001 6

The ability to embed the S language within Perl allows us to get the benefits
of both languages and to use the most appropriate tools in each for doing different
tasks. To complete this approach, we still have to write the code that iterates
over the document, identifying the the different commands and performing the
substitution. While this is, in principal, not very difficult, the are a myriad of
details. We have to handle line breaks, escaping characters, etc. carefully within
the regular expression matching and this can be tricky if one wants to produce
robust software. It also requires familiarity with Perl and therefore can be hard for
others to extend and maintain.

3.2 XML, XSL and XAlan

Given that the solution using Perl requires a non-trivial amount of work to create
the code that identifies the commands in the document, we can ask whether there
is a better tool. The essential characteristics of what we want are simple. We need
a way to

• identify elements within a document that are to be evaluated,

• evaluate the code, and

• insert the result into the document in that location.

The first is a form of markup in which we identify the different elements and so
something like XML, the eXtensible markup Language, is appropriate. Creating
a document by transforming elements of another document by matching these ele-
ments with transformation rules is exactly the task of XSL, the eXtensible Stylesheet
Language [2]. Since XML is becoming very fashionable and benefits from author’s
familiarity with HTML, it is a good choice for the language to author the report.
XSL is also becoming popular and allows us to separate the formatting for differ-
ent target audiences, media, etc. from the content and also to reuse styles across
different documents, just as we do in LATEX.

So, the XML/XSL approach seems to give us the best of all worlds in that it
performs the transformation for us. Additionally, XSL allows us to manipulate the
entire document from within one of these rules. This is more flexible than the Perl
approach we outlined above which can only insert the output of a command at the
point in the document that the expression was found. The difficulty is that XSL
does not support the ability to invoke S functions or evaluate S expressions.

We can overcome this limitation of XSL by embedding S within an XSL trans-
lator. We have done this with the XAlan translator developed as part of the XML
project within the Apache Software Foundation. This allows the creators of XSL
rules to call arbitrary S functions as if they were regular, built-in XSL functions.
The results of these function calls can be used as regular values in other XSL
expressions or inserted directly into the document being created in the XSL trans-
formation. XSL values can be passed as arguments to these S functions and are
converted automatically. We can evaluate expressions and access S values within
these that were created via earlier XSL function calls.

Proceedings of DSC 2001 7

With this ability to call S functions to create output, the XML/XSL approach
fits all our needs. The author of the report specifies the text of the report and
how the different elements are to be displayed in the report. We develop an XSL
file which transforms the XML document into the expanded HTML version that
contains the output from evaluating the S commands within the document.

The author of the report might look something like the following:

<h1>Daily Report</h1>
<center><date/></center>

There were <code lang="S">nrow(yieldTable)</code> lots
produced today. The median lot yield is
<code lang="S">median(yieldTable$avg.yield)</code>

The idea is that we have XSL rules that convert the XML tags and their contents
into the appropriate HTML elements. For instance, the XSL rule that handles the
<date> element simply calls R’s date() function and inserts the resulting string
into the document in place of the that tag. Similarly, there is a general rule for
<code> tags whose lang attribute is "S". This evaluates the S expression within
that node by calling the r:eval XSL function with that value. This is specified in
XSL as

<xsl:template match="code[@lang=’S’]">
<xsl:value-of select="r:eval(string(.))" />

</xsl:template>

We generate the report invoking our extended version of the XAlan translator
with the usual arguments:

Sxslt -in report.xml -xsl report.xsl

The S functions can return XML (and hence HTML) that can be directly in-
serted into the document. In this way, we can do the formatting in XSL and/or S,
depending on the convenience of each. Support for generating XML output in S is
provided by the XML [5] and RSXMLObjects [3] packages.

3.3 Histograms and Tables

We have discussed how we can create output from S that is added to the text
of the document or used in XSL expression to control how the text is added and
formatted. Next, we look at how we create the graphical and tabular components
of the document.

The histogram of the average yield of the lots will be shown as an image within
HTML. For this, we need to create a PNG file containing the histogram figure and
to specify this file as the src attribute. XSL allows us to create the element.

As with any inter-system interface, we have choices as to where we program the
computations. And with all programming, we must trade-off complexity for the
user with the need for flexibility. We can invoke each of the individual commands

Proceedings of DSC 2001 8

for creating the histogram image in XSL. Alternatively, we can write an S function
and have it perform the different steps and return the name of the file it generated.
In this case, it is significantly to use the flexibility of the S language to express this
and so we define an S function that creates a histogram image using the name of
the variable specified by the caller.

The XSL rule to add the image of the histogram is then given as:

<xsl:template match="histogram">
<xsl:element name="img">
<xsl:attribute name="src">
<xsl:value-of select="r:histogram(@variable)"/>

</xsl:attribute>
</xsl:element>

</xsl:template>

The author of the report can position in the document as

<histogram variable="yieldTable$avg.yield"/>

where the VARIABLE attribute identifies which variable to use.
The contents of the table giving the summary values for the different lots is also

generated in S. In this case, the S function returns a string containing the HTML
specification of the table. We also note that we have made each of the lot identifiers
a link in the HTML document. The action associated with this link is controlled
by JavaScript [4] and is used to show the composite or average wafer for that lot in
a different frame of the document display.

4 Report Rendering & Interactive Components

Now that we have generated a report, we move to rendering it and allowing the user
to interact with it. For example, if the lots have a large quantity of errors or are
unusual relative to other days, the engineer may want to investigate a little further.

We use Netscape to render the HTML file. Within this, we use HTML forms
and JavaScript to control the interactive components. The reader can click on the
lot identifier in the table in the summary page of the report. This brings up a new
Netscape window 2 which allows the user to select any of the lots and to view not
only the basic summary information, but also the distribution of the different error
types for the different wafers within that lot.

What is interesting about this interface is that its contents are dynamically gen-
erated, but in a different manner than the report. Instead, we are using JavaScript
to handle the click on the lot identifier and create the new window. Additionally,
the names of the lots are dynamically retrieved while the document in the new
window is being created. JavaScript obtains these lot names by calling R. The R
interpreter is running as a plugin within Netscape. The R interpreter is accessible
within JavaScript code as a regular JavaScript variable offering numerous methods
by which we can gain access to all the computations in R.

Proceedings of DSC 2001 9

Figure 2: Interactive summary of lots.

Proceedings of DSC 2001 10

We create the R interpreter for the page using the <EMBED> and specifying
the appropriate MIME type so that the S plugin is invoked. We initialize the R
interpreter so that it can find the functions in the wafer library and also access the
lot data associated with this report. We do this by specifying an S expression as
the value of the INIT attribute of the <EMBED> tag.

We can now use the R interpreter within JavaScript code to create the contents
of the interface and also in the event handlers. We create the choice menu by having
JavaScript ask R for the names of the lots and then iterating over the array that R
returns and using JavaScript’s facilities for creating the contents of a a choice menu
(<OPTION> elements). A JavaScript function to do this is the following

function addLots(selectMenu) {
var ids = document.seval.call("getLotIds");

for(var i = 0; i < ids.length; i++) {
selectMenu.options[i] = new Option(ids[i]);

}
}

The caller provides the selection menu to which the new entries should be added.
Since there is only one R evaluator in the page, we hard code its JavaScript name
as document.seval. To get the names of the lots, we invoke the S function get-
LotIds(). The call() method acts much like the do.call() function in S, but from
within JavaScript, and allows us to call the specified function. In this case, there
are no arguments. The return value is a character vector in S which is converted to
a JavaScript array. And so now, we add an entry for each element in this array.

For those more comfortable programming in S rather than JavaScript, we should
note that we could just as easily have programmed the function in S and had it
add the options selection menu. We can pass JavaScript objects such as the select
menu to S and it can then access the members/fields of that object and also invoke
its methods. This again, allows one to program in whichever language is most
convenient.

We specify JavaScript code for the event that the user chooses an lot in the
<SELECT> menu. This determines which lot was selected and then calls a
JavaScript function, displayLotInfo(), to display the summary information. This
queries S for the minimum, maximum and average wafer yield for that lot and then
inserts these into the <TEXTAREA> elements in the top frame of the display.
It then has S compute the table of error type frequencies and displays this by loop-
ing over the elements of the table and adding each as an entry in a simple HTML
unordered list (). Note that these are displayed in a different frame within
the window so that we can have dynamic text.

Again, we can have S handle more of the computations and use JavaScript only
to catch the event and hand control to S with the necessary JavaScript objects. We
can perform exactly the same computations in S as we do in JavaScript. Addition-
ally, just as we did when generating the report via the XSL rules, we can have S
create the HTML to be displayed as an S character vector and then add that to

Proceedings of DSC 2001 11

the frame’s document. So we have many choices in how we implement the different
pieces of the application.

4.1 Graphics

To this point, we have only discussed using S to compute values that we display
as text form. Of course, the graphics facilities in R and S-Plus are a powerful and
attractive aspect of the environment and ideal for inclusion in reports. One might
consider using R to generate plots in files and then dynamically adding these to the
display. This can be done quite easily using the jpeg() or png() graphics devices
and JavaScript’s ability to dynamically set the SRC attribute of an image element.
We use this in 2 to create the figure in the lower right corner.

This approach is adequate but unsatisfactory. It is hard to preserve get the size
in R to match the available size in the HTML document and to preserve the aspect
ratio. Perhaps the most important drawback is that the plots require the use of
local files and are fixed/static. A different approach is to embed one or more R
graphics devices directly into the HTML document, in the same way that we can
embed the R interpreter. We can use the <EMBED> tag to create an instance of
the R graphics plugin. We use the MIME type app/x-sgraphics.

Again, we can associate each instance with a JavaScript variable and invoke the
different methods that each device provides. These can be used to display arbitrary
S plots. We can change their contents at any point in time and in this sense, the
devices can be considered live components.

In our example, we use these graphics plugins to display a visual representation
of the “average” wafer of a lot and also to show all the individual wafers within
that lot. The RWafers library provides facilities for drawing individual wafers.
We create a document that provides a choice menu to allow the user select a lot.
Selecting a lot updates the two graphical displays showing the average wafer for
that lot and the array of individual wafers. The result is displayed in figure 3

4.2 Other Interactive Component Types

We can use a variety of different components that are not available in HTML forms.
For example, we can use any of Java’s AWT components including sliders, buttons,
text widgets, etc. The Swing classes are also available in many browsers as a plugin.
Similarly, the Tk widgets can be used via the Tcl plugin.

The “magic” by which this inter-communication works is via LiveConnect [1].
This is Netscape’s facility for allowing plugins to be accessible from JavaScript and
vice-versa. This also allows plugins to communicate with each other.

5 Embedding S in Databases

The interactive document we described above requires that the wafer data be loaded
into the local R session within the Netscape browser. In many situations, it would be
preferable to have the data within a remote database and to have the computations

Proceedings of DSC 2001 12

Figure 3: Using R graphics devices as Netscape plugin components

Proceedings of DSC 2001 13

done there. We can of course do this, but that requires rewriting much of the code
developed in the RWafers in C so that it can be integrated into the database.

A better and more feasible approach is to use the REmbeddedRPostgres [7]
package. This allows S functions to be used within a Postgres server as if they were
first-class, built-in SQL functions. Clients of the database server can invoke these
functions within SQL statements. This is another example of the flexibility intro-
duced by embedding one system within another. In this case, the data management
is performed within the specialized database server and the statistical environment
has access to the data and performs the specialized statistical computations.

6 Future Work

There are a variety of other places in which we might consider embedding R. Lan-
guages such as Python, Dylan, Visual Basic, etc. are obvious candidates. Other
applications such as Gnumeric, SciGraphica are also interesting.

We need multiple interpreters or concurrency within the S language and the
implementations. This will allow different instances of the S interpreter to be used
within an application. This does not require parallelism, but merely the ability to
have multiple evaluations be interleaved. We also need the S implementations to
be thread-safe so that we can embed them within threaded applications.

We need a security model that can allow us to embed S within other systems
and limit what user-level code can access, e.g. files, processor time, memory, etc.

7 Summary

It is important to recognize that while we have focused on the idea of report gen-
eration, the ideas of using XML and JavaScript within HTML are more widely
applicable. The XSL translation tool allows for reproducible documents that can
also be run with different inputs to examine different scenarios. The dynamic HTML
and JavaScript facilities should greatly facilitate developing multi-media educational
material that uses statistics. Also, they allow one to create research papers that
are interactive and encourage readers to use their own data or explore the results
under different circumstances.

The idea of embedding is more general than report generation and is becoming
more common. It is important that we provide our statistical software to others in
a form that they can use. Allowing developers using other language to access the
functionality we provide, without them having to understand the details will make
the work that we do more widely accepted.

The example has introduced numerous languages: XML, XSL, HTML, JavaScript,
S, Java, C. Instead of using Java to create the interactive components, we might
also use the Tcl/Tk plugin, introducing yet another language. While this may
seem daunting, it is in fact a benefit. One can choose to do the programming and
evaluate the computations in any of these different languages. We do not require
programmers to know all of these languages, but permit them to use any of these

Proceedings of DSC 2001 14

languages that they deem appropriate. This gives people more flexibility to balance
the different constraints involved in development (e.g. familiarity, maintainability,
efficiency, portability, etc.). The idea is

program once, invoke anywhere

Figure 4: Overall Summary Page. The text in blue and the plot and table are
computed in S.

References

[1] The Liveconnect/Plug-in Developer’s Guide. URL, http://home.netscape.
com/eng/mozilla/3.0/handbook/plugins/index.html, March 2001.

[2] Neil Bradley. The XSL Companion. Addison-Wesley, 2000.

[3] Robert Gentleman Duncan Temple Lang. RSXMLObjects: Reading and writing
S objects in XML. URL, http://www.omegahat.org/RSXMLObjects, March
2001. Omegahat package for R and S-Plus.

http://home.netscape.com/eng/mozilla/3.0/handbook/plugins/index.html
http://home.netscape.com/eng/mozilla/3.0/handbook/plugins/index.html
http://www.omegahat.org/RSXMLObjects

Proceedings of DSC 2001 15

[4] David Flanagan. JavaScript: The Definitive Guide. O’Reilly & Associates, Inc.,
1997.

[5] Duncan Temple Lang. The XML parser for S. URL, http://www.omegahat.
org/RSXML, December 1999.

[6] Duncan Temple Lang. Direct interface between the S and Perl languages. URL,
http://www.omegahat.org/RSPerl, November 2000.

[7] Duncan Temple Lang. R Embedded within the Postgres Database Server. URL,
http://www.omegahat.org/RSXML, June 2000.

http://www.omegahat.org/RSXML
http://www.omegahat.org/RSXML
http://www.omegahat.org/RSPerl
http://www.omegahat.org/RSXML

	The Goal of Integration
	An Example: Report Generation
	Chip Manufacturing

	Generating the Report
	Using Perl
	XML, XSL and XAlan
	Histograms and Tables

	Report Rendering & Interactive Components
	Graphics
	Other Interactive Component Types

	Embedding S in Databases
	Future Work
	Summary

