
DSC 2001 Proceedings of the 2nd International
Workshop on Distributed Statistical Computing

March 15-17, Vienna, Austria
http://www.ci.tuwien.ac.at/Conferences/DSC-2001

K. Hornik & F. Leisch (eds.) ISSN 1609-395X

R Lattice Graphics∗

Paul Murrell†

Abstract

Lattice is an add-on package or library for the R statistical computing en-
vironment. It provides an alternative set of user-level functions for producing
graphical output. Compared to the base R graphical functions, the Lattice
functions provide greater control over the specification of where graphical
output appears on the page. In addition, Lattice graphics functions return
graphical objects, which may be used to interactively edit the graphical out-
put.

1 What is Lattice ?

Lattice is an add-on library for the R statistical computing environment. It provides
a set of user-level graphics functions as alternatives to the R base graphics functions
such as plot(), text(), points(), etc for the construction of statistical graphics
(plots).

2 Who needs Lattice ?

There were two main reasons for producing an alternative graphics system for R:

1. The original motivation for Lattice graphics was to provide support for the
production of graphical displays similar to those produced by the Trellis graph-
ics package in the S-Plus system (see Figure 1).

∗After this talk was delivered at DSC 2001, it was decided that the package implementing
Trellis-like functionality in R should take the name “lattice”. Consequently, the R package de-
scribed in this paper will no longer be called “lattice”, but will take a new name, possibly “G2”.
†The University of Auckland

New URL: http://www.R-project.org/conferences/DSC-2001/ 

http://www.R-project.org/conferences/DSC-2001/


Proceedings of DSC 2001 2

Time since planting (days)

Le
af

 w
ei

gh
t/p

la
nt

 (
g)

0

5

10

15

20

25

30

20 40 60 80

 1988
 F

 1989
 F

20 40 60 80

 1990
 F

 1988
 P

 1989
 P

20 40 60 80

0

5

10

15

20

25

30

 1990
 P

Figure 1: A Trellis-like plot.

These sorts of plots are difficult to produce using the base R graphics func-
tions.

2. The base R graphics system does not provide support for interactive tech-
niques such as selecting elements of a graph for editing, or brushing and
linking plots. Lattice was designed to provide support for this sort of simple
interaction.

3 What can Lattice Graphics do ?

The Lattice graphics package is designed to provide enormous power and flexibility
for producing statistical graphics. The following sections describe the tools provided
for the user.

3.1 Viewports

The base R graphics system is based on the concept of a plot region, surrounded
by a margin. There may be multiple plots, each with their own margins, and all of
them surrounded by a further “outer” margin (see Figure 2).

Lattice is based instead upon the concept of a generic drawing region. This will
sometimes correspond to a plot region, where data symbols and lines are drawn,
but it may also correspond to an entire plot, a plot margin, a legend, a collection
of plots, or just a data symbol.



Proceedings of DSC 2001 3

outer margin 1

o
u
t
e
r
 
m
a
r
g
i
n
 
2

outer margin 3

o
u
t
e
r
 
m
a
r
g
i
n
 
4

plot margin 1
p
l
o
t
 
m
a
r
g
i
n
 
2

plot margin 3

p
l
o
t
 
m
a
r
g
i
n
 
4

plot region

Figure 2: The base R graphics system.

A Lattice viewport is a rectangular region with a user-defined location, justifi-
cation, and size. For example, Figure 3 shows the region defined by the command:

lviewport(x=unit(1, "npc") - unit(1, "inches"), y=0.5,
width=0.2, height=0.5, just=c("right", "centre")))

3.2 Coordinate Systems and Units

The base R graphics functions are related to a specific coordinate system as well as
to a specific task. For example, the text() function can be used to draw text within
the plot region, relative to the coordinates of the x- and y-axes (“user coordinates”).
On the other hand, the function mtext() produces text output in the margins of a
plot (or in the outer margins) using a coordinate system relevant to the margins.

In Lattice, a large range of coordinate systems are available in all viewports.
The user selects which coordinate system to use by specifying a unit for each value.
For example, the following statement specifies a value of 1cm: unit(1, "cm").

Some of the coordinate systems available are:

Normalised Parent Coordinates (NPC): the origin of the viewport is at (0, 0)
and the viewport has a width and height of 1. This is useful for things like
centering objects. For example, the location (0.5, 0.5) in NPC is always the
centre of the viewport.

Physical Coordinates (inches, centimetres, ...): self-explanatory. These are
useful for specifying objects of absolute size, for example, to produce a plot
of a fixed size for inclusion in a document.



Proceedings of DSC 2001 4

0 1

0

1
0.2npc

0.5npc

1npc−1inches

0.5npc

Figure 3: Diagram of a Lattice viewport.

Native Coordinates: All viewports have x- and y-scales. This coordinate system
is relative to those scales. This is the coordinate system to use for drawing
points and lines on a plot.

Character-based, Line-based, and String-Width/Height-based Coordinates:
Values in these coordinate systems are multiples of the nominal font size, or the
vertical distance between the baselines of two lines of text, or the width/height
of a piece of text (respectively). These are useful for arranging pieces of text
relative to each other, or other objects relative to text.

3.3 Layouts and Nesting Viewports

The wide selection of coordinate systems allows users to specify the location of a
child object within a parent viewport. There is also support for the parent viewport
to specify the location of its children.

The user is able to define a layout [1] for a viewport. This is essentially a division
of the viewport into rows and columns of different sizes. Children of the viewport
are allocated some subset of the cells within the layout. For example, Figure 4
shows a simple layout with three columns and four rows, with a viewport occupying
the middle two rows of the central column.

The above example also demonstrates the fact that viewports can be nested
within other viewports. In other words, it is possible to create a hierarchy of
viewports. This is extremely useful because many (if not all) statistical graphics
consist of a hierarchy of graphical objects. For example, a page may contain multiple
plots, and each plot may consist of a plot region plus margins.



Proceedings of DSC 2001 5

1null

1null 1null

1null

1null

1null 1null

1null 1null

1null

1null 1null 1null

1null
0 1

0

1

Figure 4: A Lattice viewport occupying cells within a Lattice layout.

Conceptually, this nesting allows the user to focus on the most convenient way
of producing each component of a graphic without having to be concerned with the
final location or size of the graphic. The classic example is a plot legend; this can
be constructed within its own viewport, using convenient coordinates within that
viewport such as line-based coordinates and string-width-based coordinates, and
then the legend viewport can be positioned within a plot.

3.4 Interaction and Customisation

The value returned by all Lattice graphics functions is an R object representing
the graphical output produced by the function. For example, the command xa <-
lxaxis() draws an x-axis and returns an R object representing that axis. It is then
possible to perform operations on the returned object. For example, the command
ledit(xa, at=c(1, 5, 9)) changes the location (and number) of the tick marks
on the axis.

Some Lattice graphics objects have a hierarchical structure. For example, an
axis contains multiple Lattice text objects representing the labels on the axes. It
is important that the user can gain access to this structure so Lattice allows the
user to specify sub-components of objects. For example, the command ledit(xa,
"labels", rot=45) changes the angle of rotation of the labels of the x-axis.

3.5 Extensibility and Ease-of-use

Lattice provides the user with more powerful control over the graphics output,
but this comes with additional complexity. Lattice has been designed so that the



Proceedings of DSC 2001 6

additional power and complexity it provides is optional; simple things are still simple
to do.

Lattice graphics functions can be used simply to produce output; for example,
the command ltext("hi") produces the text output “hi”. With a little more
work, the functions can be used simply to produce graphical objects for further
manipulation; for example, the command txt <- ltext("hi", draw=F) produces
no output, but assigns a text object to the variable txt.

As with the base R graphics system, Lattice is designed to be used program-
matically by the user. That is, users are able to extend the system to produce new
statistical graphics functions.

The user can write graphics functions which are designed to be used only for
their graphical output. For example, the following function definition produces
output, but does not return (all of) the objects associated with that output.

my.func <- function() {
ltext("hi")
lrect(width=unit(1, "strwidth", "hi"))

}

A little more work is required to write a function which returns a meaningful
graphical object. For example:

my.func <- function() {
txt <- ltext("hi")
box <- lrect(width=unit(1, "strwidth", "hi"))
lgrob(list(txt, box), "boxed.text")

}

3.6 Some Experimental Ideas

Two Lattice features are still at an early stage of development.

Rotated Viewports: It is possible to specify an angle of rotation for a viewport.
Combined with the notion of designing components without having to worry
about where they will end up, this makes it relatively simple to produce some
quite interesting plots. For example, Figure 5 shows a scatterplot with a
rotated boxplot indicating the spread of the vertical distances from the points
to the line “x = y”.

Frames and Packing: I have already described the Lattice support for having a
child object specify its location within a parent viewport (coordinate systems)
and the support for having a parent viewport specify the location of its chil-
dren (layouts). In some cases, it is useful to have more of a “discussion” occur
between parent and child. For example, when adding a legend to a plot, it
is useful to be able to specify (from the parent) that the legend should be
located to the right of the plot, but it is also useful to be able to consult the
legend to determine how much width it requires.



Proceedings of DSC 2001 7

0 5 10

Test

0

5

10

R
e

te
st

−4

−2

0

2

4

Figure 5: A plot using a rotated viewport.

This sort of problem is often encountered in the construction of a Graphical
User Interface. The common solution in such situations is to define a par-
ent frame and pack the children within the frame, effectively specifying an
approximate location for each child, but consulting the child for the required
size.

I have begun to develop this sort of an interface for constructing graphical
objects in Lattice. For example, the following series of commands were used
to produce Figure 6.

lf <- lframe()
lpack(lf, plot)
lpack(lf, llegend(pch, labels, draw=F),

height=unit(1, "null"), side="right")

4 Summary

Lattice currently has most of the support required for producing very complex
arrangements of graphical components, including Trellis-like layouts; Deepayan
Sarkar, a student at the University of Wisconsin is using Lattice to write a package
which produces Trellis-like plots (Deepayan’s package was used to produce Figure
1). In addition, Lattice graphics functions provide basic support for simple inter-
action by returning graphical objects and allowing those objects to be edited.



Proceedings of DSC 2001 8

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Girls

Boys

Other

Figure 6: A plot and legend produced by packing graphical objects into a graphical
frame.

There are still some major features missing, including clipping to viewports
and multiple devices. Much of the code also requires tidying and the addition of
argument type-checking. Nevertheless, I plan to make a beta version available on
the “Devel” section of CRAN (http://lib.stat.cmu.edu/R/CRAN/) in the near
future.

References

[1] Paul R. Murrell. Layouts: A mechanism for arranging plots on a page. Journal
of Computational and Graphical Statistics, 1999.

http://lib.stat.cmu.edu/R/CRAN/

	What is Lattice ?
	Who needs Lattice ?
	What can Lattice Graphics do ?
	Viewports
	Coordinate Systems and Units
	Layouts and Nesting Viewports
	Interaction and Customisation
	Extensibility and Ease-of-use
	Some Experimental Ideas

	Summary

