
DSC 2001 Proceedings of the 2nd International
Workshop on Distributed Statistical Computing

March 15-17, Vienna, Austria
http://www.ci.tuwien.ac.at/Conferences/DSC-2001

K. Hornik & F. Leisch (eds.) ISSN 1609-395X

RGL: An R Interface to OpenGL

Duncan Murdoch∗

Abstract

OpenGL is a cross-platform library for 3D rendering. In this paper I will
describe RGL, an R package providing a simplified interface to it. The style
of the interface follows that of the older S or R plotting functions, with some
differences. In particular, it is possible for the user to manipulate objects on
the screen, and programmatically to change the appearance or content of the
display.

1 Introduction

OpenGL [5] is a hardware-independent library of about 150 functions for 3D graph-
ics rendering. Implementations exist on all of the more popular computing platforms
in use today: MS Windows, various Unix versions, Apple Macintosh, etc. It is a
direct descendant of the GL graphics library written by Silicon Graphics. Most
recent 3D video hardware comes with OpenGL drivers, allowing programs written
for OpenGL to automatically take advantage of hardware acceleration features.

R [3] is a GNU implementation of the S statistical programming language [1]. In
this paper I describe a prototype implementation of RGL, an R package providing a
simplified interface to OpenGL. I will assume in this paper that readers are familiar
with R and S, but perhaps not with OpenGL.

In the remainder of this section I give a short overview of OpenGL and Delphi,
the package used to compile the external code in RGL.
∗University of Western Ontario

New URL: http://www.R-project.org/conferences/DSC-2001/

http://www.R-project.org/conferences/DSC-2001/

Proceedings of DSC 2001 2

1.1 OpenGL

OpenGL is a complex library. There is support for drawing 3 dimensional geometric
primitives (points, lines and polygons). It automatically handles depth cues such
as perspective, hiding objects behind ones that are closer to the viewer, fog that
makes more distant objects tend to fade out, etc.

Light in OpenGL may come from ambient sources (the same brightness in all di-
rections), diffuse sources (greater brightness from some general directions), or point
sources. The viewer sees the effect of lighting on surfaces defined using different
materials. A material is defined by its reflectivity: it may have different ambi-
ent, diffuse and specular (shiny) properties. Materials may also be light sources
themselves, or may be transparent.

A number of tricks are available to improve the three dimensional illusion while
using simple polygon tilings. Textures, or bitmapped patterns, may be displayed
on surfaces to give the illusion of more detail than is really being drawn. Colours
are defined at polygon vertices, and may be smoothly blended over the surface of
the polygon. In order to know the reflectivity of a surface, a normal needs to be
defined, but the normal need not be the actual geometric normal to the polygon:
indeed, different normals can be used at each vertex, with values in the interior of
a polygon interpolated to simulate a curved surface.

Most of OpenGL is designed to be platform independent, but some necessary
features are left out of the basic library, and are implemented in a platform depen-
dent way. These include interaction with the computer’s windowing system, and
the display of text.

1.2 Delphi

The interface to OpenGL is described in the C language, but no C-specific constructs
are required, so OpenGL is callable from many other languages. The prototype im-
plementation of RGL described in this paper was programmed in Delphi [2]. Delphi
is a component-based programming package [4], which allows easy prototyping of
the user interface. The most natural way to add external code to R is through a
shared library (a DLL in Windows); Delphi was used to compile this library.

It is my intention to rewrite the shared library in C, once the design of RGL
has stabilized. This will make it possible to port RGL to other platforms besides
Windows.

2 RGL Overview

Whereas OpenGL is a complex low level graphics library, RGL is designed to offer
both high level and low level support, similar in many respects to the graphics
model defined in R. See Table 1 for a list of most of the RGL functions.

R has functions plot, hist and persp for scatterplots, histograms and per-
spective plots respectively; RGL has functions plot3d, hist3d and persp3d. The
options to the RGL functions are very similar to the options to the default versions
of the R functions. For example, Figure 1 shows the result of the R code

Proceedings of DSC 2001 3

High level hist3d, persp3d, plot3d
Low level lines3d, segments3d, points3d, triangles3d, quads3d,

text3d
Annotations axis3d, axes3d, box3d, mtext3d, title3d
Parameters par3d
Windows open3d, close3d, clear3d
Colours rgb.to.color, color.to.rgb
Transforms translate3d, rotate3d, scale3d
Modifiers setcolors3d, setnormals3d, setpoints3d, settext3d
Grouping begingroup3d, endgroup3d
Objects print.obj3d, summary.obj3d, as.obj3d, as.list.obj3d,

[.obj3d, type3d, length3d, items3d

Table 1: The main functions defined in RGL.

x <- rnorm(1000)
y <- rnorm(1000)
hist3d(x,y,col=’red’)

At the lower level, RGL has functions points3d, lines3d, segments3d, text3d,
triangles3d and quads3d. The first four of these correspond to similarly named
functions in R; the latter two draw filled three dimensional polygons. These func-
tions are used to build up the higher level graphics.

At an intermediate level, the functions axis3d, axes3d, box3d, mtext3d and
title3d are used to label and annotate graphs.

Like R, RGL has a function par3d for setting graphical parameters. About 25
parameters can be set or queried. These include parameters for scaling (RGL can
rescale each coordinate separately, or apply the same scaling to each), parameters
describing the position and colour of the graphics window, OpenGL display pa-
rameters controlling lighting, fog and perspective, and parameters controlling the
thickness of lines and points. There are also parameters controlling the interaction
of the user with the display. By default, the user is only allowed to rotate the display
about a vertical axis (since it is easy to get disoriented when the up-down direction
is changed), but par3d allows more freedom to be granted. Other parameters tell
RGL to skip updates of the display (so that a number of new objects can be added
without redraws after each one) or to ignore the extent of objects when calculating
scaling (so that axes and labels on a graph don’t affect its scaling).

Besides these functions that correspond to functions in R, RGL provides several
other groups of functions. There are functions for opening, closing and clearing
display windows, functions for translating colours from the system used in R to
a numeric Red-Green-Blue system, and functions for creating transformation ma-
trices. OpenGL normally works in four dimensional homogeneous coordinates in
which vectors (x, y, z, w) are used to represent the point (x/w, y/w, z/w); RGL sup-
plies functions to construct 4× 4 matrices representing translations, rotations, and
rescalings of the data. (A quick introduction to homogeneous coordinates is given

Proceedings of DSC 2001 4

Figure 1: A simple bivariate histogram.

in an appendix to the OpenGL reference manual [5].)
The “modifier” group of functions allow the data in a plot to be changed by

the user. The graphics model in R is essentially “drawing in ink”: once objects
are placed on a graph, they may be covered by later objects, but they can’t be
changed or deleted. This allows it to work directly with printers and other hard
copy output devices. RGL, on the other hand, is essentially dynamic: in order
to present different views of three dimensional objects, it’s necessary to redraw
them many times per second. RGL allows the user to change what is redrawn, by
giving access to the internal data being displayed in the graph. Internally data is
maintained in the original scale; functions are available to query and change the
values. It is also possible to change the normals and colours at each point, and the
strings used for text.

RGL defines graphical scenes hierarchically. Each plot is a group of objects
defined in a particular frame of reference. Some of the objects may be groups
themselves, with their own internal coordinate systems. To support this model,
there are the functions begingroup3d which declares that a new group is being
drawn, and endgroup3d which embeds it in a larger scene.

Finally, a number of functions treat RGL objects as R objects. All of the data
in the RGL objects is maintained externally, in a format suitable for OpenGL
display; only “handles” (currently implemented as pointers typecast to integers) to
the external objects are seen in R. However, functions that create these handles
give them the class obj3d, and support functions to print and work with this class

Proceedings of DSC 2001 5

are defined, so that in many respects it appears to the R user as though the objects
are fully defined within R.

3 Example

The plot3d function operates much like R’s plot function, and on paper, the
displays don’t look very three dimensional. In this section I’ll present an example
using persp3d instead.

Consider Ross Ihaka’s volcano data from the R distribution. To draw this in
perspective form, the following modification of the example code for persp could
be used:

> data(volcano)
> z <- 2 * volcano # Exaggerate the relief
> x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
> y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)
> p <- persp3d(x, y, z, scale = FALSE, axes = FALSE,
+ smooth = T, xlab = ’’, ylab = ’’, zlab = ’’)

This produces results very similar to what persp would produce, but the surface is
smooth (the normals are fit separarately at every vertex) and the user can rotate
the image to get a better view.

Figure 2: The volcano dataset displayed by persp3d.

We might choose to colour the volcano depending on its altitude. The persp3d
function has two arguments to support this: col and rgb. The col argument
takes colours specified in the usual way with R, i.e. as selections from a palette
or as text strings naming the colour. The rgb argument (with default value rgb =
color.to.rgb(col)) works with the numerical RGB colour values instead. Colour
can be given uniformly for the surface, or separately for each point in the grid of z

Proceedings of DSC 2001 6

values. It is generally faster to specify the colours using the rgb argument, because
fewer conversions to the numerical format will then be required.

Another way to colour the graph is to use the modifier functions on the existing
plot. The variable p that stores the result of the persp3d call has four members:

> names(p)
[1] "handle" "indx" "indy" "indz"

The handle member is the handle of the list of triangles that make up the plotted
surface. The other three members are lists of indices into the original x, y and z
variables corresponding to the vertices of the triangles. These allow us to modify
the graph without redrawing it:

> r <- range(z)
> zvect <- (z[p$indz] - r[1])/(r[2]-r[1])
> palette <- color.to.rgb(terrain.colors(50))
> rgb <- palette[round(zvect*49,0)+1]
> setcolors3d(p$handle, rgb = rgb)

Figure 3: The volcano dataset with the colours modified to indicate altitude.

First we calculate a vector zvect containing the standardized z values at every
vertex on the drawn surface. We then use the terrain.colors function to generate
a sequence of 50 colours, and convert them to the numerical RGL format. Next
we create a vector rgb containing the colour corresponding to the altitude at each
vertex. Finally, the setcolors3d call changes the displayed surface so that it uses
these colours (Figure 3).

4 Discussion

RGL is still in the prototype stage. Many OpenGL features are not presently
supported: multiple lights, changes to the surface material properties, textures,

Proceedings of DSC 2001 7

the more exotic drawing modes, font selection, etc. I do have short-term plans to
support materials and font selection; the other items will have to wait.

I think RGL demonstrates some ideas that may be applicable to a new version
of R graphics in general. In particular, the ability to modify data in a plot makes
many things possible: animations, sequential displays which automatically rescale,
etc.

RGL is currently available from my web page

http://www.stats.uwo.ca/faculty/murdoch/software

but only in binary form for the Windows version of R. Once the design has settled
down, I plan to convert the external library code (about 3700 lines in Delphi) to C,
so that it will be more widely available.

References

[1] John M. Chambers and Trevor J. Hastie. Statistical Models in S. Chapman &
Hall, 1992.

[2] Borland Software Corporation. Borland Delphi Professional Version 5.0. 1999.

[3] Ross Ihaka and Robert Gentleman. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

[4] Duncan J. Murdoch. Programming with components. Chance, 12(4):47–49,
1999.

[5] Mason Woo, Jackie Neider, and Tom Davis. OpenGL Programming Guide,
Second Edition. Addison-Wesley Developers Press, 1997.

http://www.stats.uwo.ca/faculty/murdoch/software

	Introduction
	OpenGL
	Delphi

	RGL Overview
	Example
	Discussion

