
DSC 2001 Proceedings of the 2nd International
Workshop on Distributed Statistical Computing

March 15-17, Vienna, Austria
http://www.ci.tuwien.ac.at/Conferences/DSC-2001

K. Hornik & F. Leisch (eds.) ISSN 1609-395X

R Graphics

The Good, The Bad, and the Ugly

Ross Ihaka ∗

Abstract

The present R graphics system was originally written as a placeholder,
which could be replaced when a better alternative became available. This
temporary solution has now become so entrenched that it is probably no longer
possible to remove it. In this paper we will look at some of what is possible
in the R graphics system, how it could be improved, and what might not be
fixable. We will also look at how the existing system might be augmented and
see what tradeoffs might be involved in adding an additional graphics system.

1 The R Graphics System

Like much of the rest of R, the graphics system was written quickly, with minimal
programming resources. The strategy at the time was to implement a basic graphics
system and then to revisit the design of the graphics system at a later time. How-
ever, other R development tasks have consumed any resources which might have
been available for this task, and no rewrite has taken place.

Because of the need to work quickly, it was decided to implement the existing
API of the S graphics system. As a result, R now has a graphics system is largely
compatible with that of the S system, as described in Becker and Chambers [1] or
Becker, Chambers, and Wilks [3].

The S graphics system is is based on the Bell Laboratories GR-Z graphics kernel
[4] which is itself based on an even older graphics system [5]. It provides a device
independent layer which is implemented in terms basic vector primitives, and and
underlying set of device drivers which carry out the actual drawing.
∗Department of Statistics, University of Auckland, New Zealand.

New URL: http://www.R-project.org/conferences/DSC-2001/

http://www.R-project.org/conferences/DSC-2001/

Proceedings of DSC 2001 2

A good deal of low-level information on GR-Z is available in Becker and Cham-
bers [2], and a descriptive overview is available in Chambers [4]. The author used
this information together with some experience of implementing S device drivers as
the basis for writing the system. Indeed, the R graphics device driver for the X
window system is simply a modified version of an older S driver.

The GR-Z graphics system is now quite old and many of the devices it was
originally designed to support are now no-longer in common use. Despite this, it
must be regarded as one of the most successful systems of its type (other such
systems include GKS and Core). Indeed, the quality of the graphics is often given
as one of the most important reasons for using S. A good part of this success is
almost certainly due to the fact that the graphics system was designed specifically
to support graphics for data analysis and not just as a general graphics system.

In addition to the S graphics API, R has a number of extensions which users
have found useful. In particular, the extension for adding mathematical annotation
to plots (Murrell and Ihaka [8]) and a computational model for colour are finding
good uses.

2 Key Graphics Features

In GR-Z (and hence in the R system) graphical output is produced as a series of
one or more figures placed onto a single “page” of output. Each figure contains a
central rectangular plot in which data are presented. The margins surrounding the
plot contain additional annotation and labels. When multiple figures are placed on
a page it is most common to arrange them as a one- or two-way array, but more
general layouts are possible. In the case of R, Paul Murrell has implemented some
significant additions to the layout facilities [6], [7].

Each figure contains a central plot region which usually contains the figure’s
graphical display and is surrounded by margins. The plot region and its margins all
have natural coordinate systems. The coordinates of the plot region are determined
by the data display and the coordinates of the margin are those of the data display in
one direction, and of lines of text in another. The use of margin coordinate systems
makes it possible to provide a wide variety of annotation in a plot’s margins. This
is a useful feature that even more modern graphics systems often do not provide.

It is possible to draw into the plot region and margins with a number of primitive
vector graphical operations. S provides the operations:

lines lines and polylines
points glyph drawing
polygons polygon drawing
text text drawing

A special variant of the text primitive (named mtext) draws text into plot margins
using the special coordinate systems for the margins. To these, R has added the
special primitive rectangles, because it is such a commonly used operation which
can benefit from a special implementation.

Proceedings of DSC 2001 3

The S graphics system made the drawing operations device independent, but
the implementers of device drivers were left free to use whichever set of colours
and line textures they preferred. In R we have endeavoured to bring these features
closer to true device independence. In particular, device drivers are passed 24 bit
RGB colour specifications and are expected to do the best job they can in rendering
these colours.

Since devices differ in how they render RGB, this is still not full device indepen-
dence, but it does allow limited computations to be made on colours. In particular,
it is possible to carry out shading computations based on lighting models. This
has been used, for example, to add a small amount of visual realism to the persp
function.

3 Graphics State

All graphics systems must deal with the problem of maintaining state. For example,
PostScript uses its gsave and grestore operators together with the ability to
manipulate individual graphics state parameters to provide control over its opera-
tion. The GR-Z system has a very similar mechanism. At the interpreted level, the
par function provides access to and control over the internal state of the graphics
system. However, while PostScript only provides relatively low-level capabili-
ties, GR-Z provides a mix of low- and high-level capabilities. For example, the par
function controls,

colour, line texture, line thickness, font family, font size, font rotation,
plotting symbol, plot type, axis type, tick length, margin size, figure
layout, . . .

This mixture of high- and low-level state parameters makes the par command the
single most complicated S or R command. This complexity represents an obstacle
which probably prevents many people from taking full advantage of the graphics
system.

Although par controls a large number of graphics parameters, there is an argu-
ment that there is still too little state being maintained for good control of high-level
plots. High-level level plots can contain a large number of primitive graphical ele-
ments (lines, points, text, etc.), and it may be desirable to control the properties of
each of the elements separately.

There are two aspects to providing the user with control over the large number
of graphics parameters needed to control a typical high-level display.

(i) Controlling the default values for those parameters.

(ii) Overriding the default values in a call to the function.

One means of providing this control is to expand the list of graphics parameters
which par controls. As a result of experimentation in this direction, the present
version of R has additional graphics parameters to control the marginal annotation

Proceedings of DSC 2001 4

(main and sub-titles and axis labels) used in plots. In retrospect, the additional
complexity that this has introduced seems to outweigh any benefits it has produced.

An alternative approach to packaging additional graphics control is to use the
R closure mechanism to maintain the graphical parameters for a function “inside”
that function. As a very simple illustrative example, the following code shows how
to define an R function called smoothplot which plots a set of points and draws a
smooth line through them.

(function() {

points.par <- list(pch = 1, col = "black")

lines.par <- list(lty = "solid", col = "black")

smoothplot <<-
function(x, y,

points.arg = list(),
lines.arg = list(),
setpar = FALSE,
resetpar = FALSE)

{
if (resetpar) {
points.par <<- list(pch = 1, col = "black")
lines.par <<- list(lty = "solid", col = "black")

}
if (setpar) {
points.par[names(points.arg)] <<- points.arg
lines.par[names(lines.arg)] <<- lines.arg

}
else {
points.par <- points.par
lines.par <- lines.par
points.par[names(points.arg)] <- points.arg
lines.par[names(lines.arg)] <- lines.arg

plot(x, y, type = "n")
points(x, y,

pch = points.par$pch,
col = points.par$col,
bg = points.par$bg)

lines(lowess(x, y),
lty = lines.par$lty,
col = lines.par$col)

}
}

})()

Proceedings of DSC 2001 5

The code consists of a single expression which creates a function-closure that
has access to an environment which contains variables points.par and lines.par
which hold lists containing the graphics parameters associated with the points and
lines in the plot.

The function can be used in a number of different ways. If invoked as

smoothplot(x, y)

the function plots the points and fitted smooth with the default parameters. These
defaults can be overridden with function arguments as follows.

smoothplot(x, y,
points = list(pch = 2, col = "red"),
lines = list(col = "blue"))

The function can also be used to change the default graphics parameters for the
plot as follows.

smoothplot(setpar = TRUE,
points = list(col = "green4"),
lines = list(col = "gray"))

Finally, it is possible to reset the parameters to their initial values.

smoothplot(resetpar = TRUE)

The use of closures to maintain graphics state provides a relatively simple ex-
tension to the standard par mechanism. The extension has the advantage that the
state variables can be tailored to the particular graphical display being created. It
also provides the advantage of providing tunable default parameters for purposes
other than maintaining graphical state.

4 What The Graphics System Can Do

Because the R graphics system is defined in terms of primitive two-dimensional
graphics operations, it is possible to draw a wide variety of graphs. Many common
graphs have been packaged in a high-level way as R functions, but there is no reason
for users to feel restricted to just these prepackaged forms. Using a little creativity
and some elementary geometry it is possible to produce a variety of attractive
graphical displays. In this section I’ll show a few of the graphs I have produced
with R for my introductory visualisation course.

Figure 1 is a redrawing of the classic map, created by Charles Joseph Minard
and shown in Tufte [9]. The map shows the size of Napoleon’s invading army during
his 1812 campaign in Russia. The graph is made up of simple line, polygon, and
text elements. The only difficulty in constructing this graph was obtaining the
coordinates for the various elements in the graph. This was done by using the xfig
drawing program to trace over the scanned outline of the graph and then extracting
the coordinates from the resulting xfig data file.

Proceedings of DSC 2001 6

0°

− 9°

− 21°

− 11°

− 20°
− 24°

− 30°
− 26°

Oct.18Nov.9Nov.14Nov.28Dec.1Dec.6Dec.7

100 km

Moscow

MaloyaroslavetsVyazma

Polotsk

Minsk

 Vilna
Smolensk

Borodino

Dnieper R.

Berezina R.

Nieman R.

Figure 1: A redrawing of Charles Joseph Minard’s map of Napoleon’s 1812 cam-
paign.

Figure 2 shows a plot of the results of the party vote for the 1999 New Zealand
General Election in barycentric coordinates. The graph is of interest because New
Zealand has recently changed its electoral procedure from a first-past-the-post one
to one of proportional representation. The graph shows the bulk of the electorates
falling in a narrow band along the political left-right axis (Labour is a centre-left
party and National a centre right one). To the extreme left of the graph is a cluster
of electorates formed by the Maori parliamentary seats and below that a single
outlier which was the seat of a popular former Prime Minister.

Figure 3 shows an impression of the exterior of the RGB colour cube. The
cube has been rendered in perspective, with hidden surfaces removed, and uses a
computational model to generate the appropriate colours for the surface facets. The
rendering was been carried out with a small experimental package of interpreted
functions which extend the graphics system to three dimensions.

The three examples presented in this section represent relatively simple applica-
tions of the capabilities of the R graphics system. They show that it is possible to
use the graphics system in a rather more creative way than is attempted by many
users.

5 Future Work

Despite the fact that the graphics system contains enough functionality to produce
a wide range of graphs there are some additional features which would clearly be
useful.

• More general polygon filling. The present polygon primitive only deals with
polygons defined by a single bounding contour. It would be useful to extend

Proceedings of DSC 2001 7

0.0 0.2 0.4 0.6 0.8 1.0

National

0.0

0.2

0.4

0.6

0.8

1.0

O
ther

0.0

0.2

0.4

0.6

0.8

1.0

La
bo

ur

Figure 2: The per-electorate party vote for the 1999 New Zealand election.

the capability to polygons defined by multiple bounding contours. This would,
for example, allow the filling of polygons “containing holes,” something which
would be particularly useful for map drawing. It would be relatively simple
to build this capability on top of the existing polygon facility.

• Three dimensional capabilities. The present graphics system is inherently two
dimensional. It would be useful to add the ability to render three dimensional
scenes in a simple way. The geometrical aspects of this are relative straight-
forward, but to be truly useful hidden line and surface capabilities are needed.
Because the underlying primitives are vector ones, many of the current com-
puter graphics methods are not applicable. There are some techniques such a
those based on BSP trees which could be used.

• Raster capabilities. If it were possible for device drivers to use the underlying
raster capabilities which most devices possess, it would be possible to add
some relative nice features such as smooth (Phong or Gouraud) shading for
three dimensional graphs, or to use raster techniques to handle hidden line
and surface problems.

• An improved font system. Current font technology makes it virtually impossi-
ble to produce truly device independent text in graphs. Some progress is being
made in this area and it may well be worth revisiting the text capabilities of
the current R graphics system to see if current developments are useful.

Proceedings of DSC 2001 8

Figure 3: The RGB colour cube.

All of these extensions are would be relatively straightforward to implement by
building on the existing graphics capabilities or by adding simple new graphics
primitives.

Another interesting question is whether it might be possible to include com-
pletely new graphics systems alongside or in place of the existing one. One ap-
proach to this would be to fully separate out the device dependent functionality
of the present system from the device independent ones. This would allow a new
system to target the existing devices.

6 Conclusions

The R graphics system is based on relatively old and stable technology. It is clear
however that there are still gains in usability and functionality to be made. The
difficulty in making the changes is primarily that of providing backward compati-
bility. Even with this problem, small changes of the type outlined in this paper can
still lead to improved functionality.

References

[1] R. A. Becker and J. M. Chambers. S. An Interactive Environment for Data
Analysis and Graphics. Wadsworth and Brooks/Cole, Monterey, 1984.

Proceedings of DSC 2001 9

[2] R. A. Becker and J. M. Chambers. Extending the S System. Wadsworth and
Brooks/Cole, Monterey, 1985.

[3] R. A. Becker, J. M. Chambers, and A. R. Wilks. The NEW S Language.
Wadsworth and Brooks/Cole, Monterey, 1988.

[4] J. M. Chambers. Computational Methods for Data Analysis. Wiley, New York,
1977.

[5] J. M. Chambers. Personal communication. 2001.

[6] P. R. Murrell. Layouts: A mechanism for arranging plots on a page. JCGS,
8:121–134, 1999.

[7] P. R. Murrell. R lattice graphics. In K. Hornik and F. Leisch, editors, DSC 2001
Proceedings of the 2nd International Workshop on Distributed Statistical Com-
puting, Vienna, Austria, March 15-17 2001. ISSN 1609-395X.

[8] P. R. Murrell and R. Ihaka. An approach to providing mathematical annotation
in graphs. JCGS, 8:582–599, 2000.

[9] E. Tufte. The Visual Display of Quantitative Information. Graphics Press,
Cheshire, Connecticut, 1986.

	The R Graphics System
	Key Graphics Features
	Graphics State
	What The Graphics System Can Do
	Future Work
	Conclusions

