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Abstract

GEEs (generalized estimating equations) provide a framework for flexi-
bly modeling clustered data. Generalized linear model (GLM) components
are used to specify marginal mean and variance functions, and “working”
covariance models specify multivariate structure. The indefiniteness of the
estimation and inference framework is a basis for criticism from theoretical
quarters (Crowder, Bka 1995), but also a basis for interesting interface design
challenges and opportunities. I will comprehensively describe the redesign
of S4/R-targeted GEE solvers. Basic issues include a) choice of language,
b) representation of complex clustered data structures to accommodate, e.g.,
responses and predictors obtained on discordant timing sequences; c) inheri-
tance from and interoperation with existing tools for multivariate modeling;
d) choice of class/method decomposition to support recognition of statisti-
cal data types; d) weak implementation methods to ease retargeting to DSC
platforms as they mature. Peripheral issues include a) exploitation of XML-
based literate programming methods; b) automatic generation of javadoc-like
hypertext doc for S4/R classes and methods.

1 Introduction

Software development and distribution is central to effective methodological re-
search in statistics. Of the 1500 or so citations of Liang and Zeger’s generalized
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estimating equation (GEE) method for generalized linear modeling of clustered re-
sponses [8], the vast majority are applications using freely distributed noncommer-
cial software (SAS IML macros [5], S/R functions from lib.stat.cmu.edu, CRAN
[1], or XLISPSTAT [10]). Another substantial fraction consists of criticisms or elab-
orations based on simulation or extension of the method using the aforementioned
codes.

Techniques of software development and distribution change along with the pre-
vailing architectures of integrated statistical computing environments such as R, S,
SAS. This paper is a highly personal and non-synoptic description of choices facing
the developer of a widely used implementation of GEE for R/S. I will consider the
choice of language, data structure protocol, development environment, and plan-
ning for future requirements in the context of redesigning GEE to exploit recent
technological advances in languages and statcomp environments.

2 Brief overview of GEE

Standard generalized linear models (GLMs) for a scalar discrete or continuous out-
come Y with expectation EY = µ are defined by a linear predictor η = Xt

1×pβ, a
link function g(µ) = η and a scaled mean-variance relationship varY = σ2V (µ). Let
D = ∂µ/∂β. For N independent realizations yi of Y with covariates xi, maximum
quasi-likelihood estimates of β are found by solving∑

i

Dt
iV
−1[yi − µi(β)] = 0.

When the yi are ni-vectors of dependent observations such that (suitably defined)
residual vectors have “working” covariance Wi(αq×1), the GEE for fixed α has the
form

UG(β) =
∑
i

Dt
iWi(α)−1[yi − µi(β)] = 0.

Liang and Zeger obtain the asymptotic distribution of solutions to UG(β) = 0 when
a
√
N -consistent estimator of α is “plugged in”, but Crowder [3] presents a case in

which misspecification of W (the parametric structure for the residual covariance)
renders UG(β) = 0 unsolvable. Various recent papers concern efficiency/feasibility
gains or losses associated with choice of form of W and choice of estimator for α.
Recent research concerning analysis of incomplete data introduces an additional
response-specific weight that may need to be estimated. My aim is to provide soft-
ware that allows users access to the best available choices of these components of
the model. Sometimes the best available choice is one the user has discovered per-
sonally. The software should allow the user to employ that choice just as personally.

3 Choices facing the developer

GEE solvers can obviously inherit familiar user interface design features from more
basic GLM fitting procedures. Protocols for specifying the regression model, link
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and variance functions can generally be inherited directly. Internals can generally
not be inherited owing to the diagonal weight in the standard GLM; GEE involves
a block diagonal weight. Interfaces permitting flexible specification of W and esti-
mation of α are highly desirable, but no dominant idiom has emerged.

3.1 Language options

It is often desirable to use more than one language to cover different aspects of
the interface/analysis programming problem for medium sized statistical analysis
procedures. I have considered:

• S and C. The gee() routines available from statlib have endured for over
a decade with one major revision to accommodate S formulas. Performance
is acceptable but hand-coded memory management of matrix computations
has been leaky. No emphasis was given in the design to the support of user
extensibility.

• Pure S. The first release of YAGS (Yet Another GEE Solver) is still viable
and offers complete flexibility in the specification of working covariance models
and estimation procedures. It is too slow to be attractive but is a good
prototype/testing platform for extensions.

• S and C++. The latest version of YAGS includes a C++ matrix library
initially written by me in 1986. Performance is good but portability, safety,
and extensibility concerns are considerable. The prospect of exploiting S4
classes and their extension to R is a motivation to major revision.

• R and Java. YAGS with C++ has not been ported to R yet owing to
S4 class unavailability. Freely distributed numerical libraries for Java and
the newly released R/S/Java interface make feasible a full redesign of GEE
using Java. This is of interest from several perspectives, including greater
portability, rigorous object-orientation, and potential reuse in applets.

Yet to be carefully considered are the new OOP classes for R/S or the massive Java
resources of Omegahat. In summary, a developer has a wide arrange of plausible
and interesting options for flexible re-implementation of medium-sized procedures,
but a systematic reckoning of costs and benefits of various choices is unavailable.
Details of a few of the aforementioned options will be reviewed in later sections.

3.2 Data structure protocols

A basic question posed by all users considering adoption of a new procedure is:
“What format needs to be imposed on my data for the procedure to be applica-
ble?” While it is straightforward for YAGS to accommodate standard rectangu-
lar R/S data frames (with one or more columns providing information on cluster-
ing/dependencies among responses), there are compelling reasons to consider the
possibility of dealing with more irregular data structures. A key example is pro-
vided by J. K. Lindsey [9], who notes the importance of dealing with responses and



Proceedings of DSC 2001 4

covariates obtained on disjoint timing sequences. Efficient representation of such
data can be accomplished with XML markup, which can subsequently be converted
to extended data frame structures through work of D. T. Lang and R. Gentleman.
Below I will discuss an XML protocol for encoding dependent data with no restric-
tions on commonality of timing sequences. The redesign of GEE solvers so that
they can operate directly on more faithful representations of complex observations
is a high priority, but depends upon resolution of the representation protocol and
XML transformation framework.

3.3 Documentation protocols for evolving procedures

Three documentation processes need focused attention in distributed statcomp pro-
cedure development.

• Literate programming [6, 11] for the development core. Integrated
code and detailed documentation/testing scripts/ test results are highly valu-
able in procedure development and distribution.

• API doc/protocols supporting remote enhancements and reuse. The
javadoc system for automatic hypertext documentation of module families is
an attractive model and can be emulated for R/S classes, as will be illustrated
below.

• Substantive/tutorial doc for end users. This typically has two com-
ponents: concentrated, technical “on-line” pages to be accessed at time of
invocation, and “off-line” texts that give narrative support. Synchronization
of such documents with evolving implementations is challenging. It is particu-
larly important that key architectural features (e.g., argument lists) of current
implementations not be misrepresented in end-user documentation.

Sections 4.1.1 and 4.1.2 below consider new approaches to literate programming
and class-based API doc generation.

3.4 Planning for future requirements

While it is impossible to anticipate in detail new requirements that will emerge from
the advance of technique and performance/integrity expectations among statcomp
users and developers, it is worth considering how novel, unfamiliar features of im-
proved statcomp software could be made more familiar and attractive to users if
they were incorporated into a widely used procedure like GEE in advance of general
demand. Two directions worthy of exploration are:

• Statistical data types. Methodology for analyzing incomplete, censored,
truncated or error-prone data has grown and earned much respect within and
outside of statistics. Data should routinely be marked to indicate that they are
e.g., measured with error or subject to detection limits, and procedures should
be sensitive to such marks, invoking an appropriate variation if available, or
refusing to process if none exists.
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• Security enhancements. The use of digital signatures on distributed pro-
cedures should be helpful in various respects, affording assurance that an
invoked procedure is in fact the one distributed by its developer.

4 Some details of current approaches to GEE for
distributed statcomp

I will now discuss details of GEE solver redesign in light of the topics sketched
above. The review will travel from documentation, to data structure protocols, and
finally to issues of program design and performance.

4.1 Aspects of documentation

4.1.1 Literate programming tools

A convenient approach to XML-based literate programming has been facilitated
by work of Duncan Temple Lang [7]. It is assumed that a single XML file will be
the basis for a variety of source and documentation modules. Call the base file
geeweb.xml, in anticipation of weaving to documentation and tangling to source
code. Literate programming resources include

• An XML tag set for marking up the web file. The set is currently defined by
article.dtd and article.xsl in the Omegahat distribution.

• XSL programs for weaving (article.xsl) and tangling (codeOnly.xsl), us-
ing XSLT processors.

At present, the weave target format is HTML. Tangling does not involve prettyprint-
ing. Figure 1 provides a simple example. noweb users will observe immediately the
added verbosity of the XML approach. Advantages of the XML approach include
use of a standardized tool set (XML/XSL as opposed to Icon/awk/LATEX) and sharp
distinction between content and structural information facilitating easy retargeting.
At the bottom of the figure, example translation commands are provided.

4.1.2 Javadoc-like hypertext generation

The genDoc utility, currently in a highly experimental condition, is intended to
provide hyperlinked documentation of S4 classes and methods with high fidelity to
current code images. This is in contrast to prompt-based documentation which may
mislead on crucial architectural information like arguments or signatures if code has
changed without documentation updates. When invoked on a given S4 class, genDoc
examines all its slots and methods in real time and produces HTML as illustrated in
Figure 2. Optional supplementary arguments to genDoc provide additional textual
details to be added to the HTML; the protocol for merging text and genDoc crawl
results is such that disparities between supplementary doc and true class structure
are resolved in favor of the true class structure. Because the GEE redesign in terms
of S4 classes has been postponed to allow simultaneous targeting of Splus and R, no
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appreciable examples of genDoc application to GEE are currently available. Figure
2 is an application to the polynomial class of Venables and Ripley [12].

4.2 Data structure protocols for longitudinal and clustered
data

Figure 3 is a document type definition (DTD) for data obtained in coordinate
systems. The DTD allows association of series of different lengths, obtained on
different coordinate sequences, on the bearer of a unique key. The DTD requires
that units be provided for both coordinate information and for data values. An
example of marked-up data is provided at the bottom of the Figure.

Omegahat provides tools for parsing XML and for flexibly manipulating content
in R/S. A small Splus program called dumpVals converts XML conforming to the
Coordz DTD into lists of coordinate-value series nested within individual-level data
records. The passage from lists of this type to data frames supporting modeling
remains to be specified.

5 Language issues

5.1 The patterned matrix class in pure S YAGS

When prototyping a mathematical algorithm it is desirable to use a compact lan-
guage that closely emulates the standard mathematical notation expressing the al-
gorithm. In pure S YAGS, solve(sum(t(D.i) %*% Rinv.i %*% D.i)) faithfully
implements (

∑
iD

t
iR
−1
i Di)−1 for a general series of cluster sizes ni. (Relative to

the definitions given in section 2, D has been slightly redefined to absorb the vari-
ance function and expose the weight as an inverse correlation matrix.) Here solve,
sum and %*% have been overloaded to deal appropriately with block structure and
block diagonal matrices which are represented as lists. The construction of lists
representing patterned matrices is carried out flexibly using fill:

Rinv.i <- fill(wcorigen, cor.els, c("pmat", "block", "diag"))

where cor.els is a list of N elements, the ith providing information required to
evaluate R−1

i using the function wcorigen. For example, if R is an exchangeable
correlation structure, then cor.els need only include the current value of α and the
cluster sizes ni, wcorigen computes two rational functions of α and ni and inserts
the values appropriately into the output matrix. If R is continuous time AR(1),
cor.els must include actual observation times for all elements, and in general
wcorigen will involve an explicit matrix inversion. The final argument to fill is
an S3 class tag identifying the matrix pattern to be returned.

5.2 A speculative design in Java

Here I will not focus on GEE but will instead consider larger-scale architecture for
statistical modeling using Java. The programming described here was carried out
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without knowledge of the existence of Omegahat, and follows some of the simpler
proposals of Felleisen and Friedman [4].

The key concept underlying this approach is the visitor design pattern, also
known as the double dispatch protocol. Statistical procedures are viewed as visitors
to variables who seek their services. Variables are typed according to properties
that determine what sort of modeling will be suitable. The base abstract class is
VblD, extended by CenVbl, for example. CenVbl has two fields, datahi and datalo
representing the upper and lower limits within which each data point is known to
lie. The Vbl classes have a single method, accept, with a parameter naming the
procedure class to be invoked.

Statistical procedures implement the OpOnVblI interface, which stipulates that
any procedure must cater specifically for each of the types extending VblD. A pro-
cedure that fails to cater for censored data, for example, cannot implement the
OpOnVblI interface. The procedure that is actually selected depends on the type
of the response variable and also potentially on features of arguments to the proce-
dure. For example, the actual procedure carried out when RegrOnV is invoked may
depend on the class of the regressors.

This design imposes an asymmetry between statistical data representations and
analysis procedures. Data classes do not require any modification when new proce-
dures are introduced, as they possess but one generic method, accept. Procedures
on the other hand are required to be explicitly prepared to deal with data from any
of the recognized statistical data types. This asymmetry seems appropriate. Data
representations should focus on efficiently encoding all substantively relevant fea-
tures of the conditions of measurement. Statistical procedures should be sensitive
to conditions of measurement of the data to which they are to be applied.

R with SJava-0.62-2 [7] is a convenient platform for experimenting with this Java
design. With ExtdMatrix, a class lightly extended from Jama.Matrix, proceed as
follows. (The VblD, ExtdMatrix and allied classes are available from the author
upon request.)

# currently reading data from disk!
X <- .Java(.JNew("ExtdMatrix"), "LoadFrom", "X")
Y <- .Java(.JNew("ExtdMatrix"), "LoadFrom", "Y")
CY <- .JNew("CmpltVbl",Y)
RegOnX <- .JNew("RegrOnV", X)
Fit <- .Java(CY, "accept", RegOnX)
gcoef(Fit) # gets est. coefficient vector

Table 1 gives some run time comparisons for ordinary linear regression carried out
in R lsfit and in the design described here. Numerical compatibility of results
checked out. As the problem size grows, the Java implementation engenders a slow-
down of a factor of 5 to 10. For a completely naive implementation of a speculative
protocol, this may not be so bad. It is of interest to compare R to R/Java in more
primitive calculations. For N = 100, p = 20 XtX and its inverse was obtained
using R/Jama matrices and in pure R. R alone is about 20 times faster for the
cross-product, and about 10 times faster for the inverse cross-product. Profiling the
Java computations should be helpful at choosing an appropriate design of this type.
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5.3 S/C++

The current distribution of YAGS [2] (some extensions described here not yet re-
leased) involves a C++ engine and will ultimately replace the statlib S/C imple-
mentation. The primary design challenge is achieving good performance without
sacrificing ease of remote extensibility. Two examples of the kinds of extensibility I
wish to support are

• auxiliary estimating equations for α, and

• correlation estimation based upon martingale residuals for analysis of censored
outcomes.

The latter problem appears to require a switch-selectable, built-in option. The
former problem is difficult to solve in a truly user-friendly way.

The current approach to incorporating and solving auxiliary estimating equa-
tions in YAGS involves a protocol for C++ functions based on matrix objects
defined in a separate library. The function arguments are

matrix PRin, matrix ID, matrix TIMin, double phi,
int p, matrix alpin

encoding the overall vector of Pearson residuals, the cluster discriminator, coordi-
nate information, the scale parameter, the regression dimension, and a current value
αc of α (possibly obtained through earlier iterations). The function returns a 3× 1
matrix object consisting of the value of the estimating function u(αc) =

∑
ui(αc),

its derivative u′, and
∑
uiu

t
i. The command matrix* e = split(PRin, ID);

yields an array of C++ matrices encoding cluster-specific residual vectors. Addi-
tional numerical facilities are provided in the associated C++ library for use in the
evaluation of user-supplied u(α). For example, the operator ∂/∂αcholR−1 is of use
in constructing unbiased estimating equations for various structures. The required
derivative is analytically trivial for the AR(1) structure; for other structures the
derivative can be obtained numerically using the library. Compliant functions are
solved generically during the GEE iteration process, using e.g., a secant algorithm
for scalar α.

6 Summary

Distributed statistical software involves both the dissemination of closed algorithms
for use “as is” and the creation of toolkits for extension and recombination by other
users, sometimes in environments that are unfamiliar or unforeseen. I have reviewed
options facing developers of documentation, data structure, and statistical inference
toolkits in the context of GEE, a popular methodology whose limits and potentials
are current research questions. Navigation of the option space is a challenging
but worthwhile task for statistical software developers. Developers, researchers and
users can all expect to benefit when good design choices are made.
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Table 1: User CPU times in seconds for 2000 runs of linear regression with an N×p
design matrix in R.

Java
N p lsfit “accept”
20 5 9.9 7.8

100 5 12.8 17.5
100 20 18.1 143.3

1000 5 34.2 128.0
1000 20 119.1 1020.0
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Figure 1: Illustration of XML source for geeweb.xml

<section>
<title>
Splus interface to yags
</title>

<p/>
The main .q files are yags.q and yags.CC.q, the latter
isolated as the interface to the C++ engine.

<code modname="yags.q" lang="S">
if (version$major > 4)
{
setOldClass(c("pmat","block","vstack"))
setOldClass("yags")
}
<fragmentRef id="the modeling wrapper"/>
<fragmentRef id="the main fitter"/>
<fragmentRef id="scale estimator examples"/>
<fragmentRef id="correlation estimator examples"/>
<fragmentRef id="correlation estimator estimating equation examples"/>
<fragmentRef id="working correlation inverse examples"/>
<fragmentRef id="extended GLM family support"/>
<fragmentRef id="the pmat class"/>
<fragmentRef id="programming miscellanea"/>
<fragmentRef id="printing utilities"/>
<fragmentRef id="test data"/>

</code>

<subsection>
<title>
GEE model formula interface for yags
</title>

<code lang="S">
<fragment id="the modeling wrapper">
yags &sgets; function(formula, id, weights = NULL, cor.met = NULL,

family = gaussian, alpfun ...
<fragmentRef id="formula processing"/>

...
</fragment>

Tangling with Xalan:
testXSLT -in ydemo.xml -xsl codeOnly.xsl -param modnm "’yags.q’" > ydemo.q

Weaving with Xalan:
testXSLT -in ydemo.xml -xsl article.xsl > ydemo.html
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Figure 2: Output of genDoc("polynomial",fraglist).
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Figure 3: A DTD for coordinatized data.

<!-- Coordinatized Data DTD: CoordzDat.dtd -->
<!ENTITY % cdesc ’coordDesc (age|IdioTemporal|IdioSpatial|

IdioSpatiotemporal|
GMT|GPS|pedigree|otherC) #REQUIRED’>

<!ENTITY % vdesc ’valDesc (numeric|char|interval|otherV) #REQUIRED’>
<!ATTLIST obsSeries

name CDATA #REQUIRED
%cdesc
coordUnits CDATA #REQUIRED
%vdesc
valUnits CDATA #REQUIRED>

<!ELEMENT CoordzDat (record+)>
<!ELEMENT record (key,obsSeries+)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT obsSeries (cvPair+)>
<!ELEMENT cvPair (coord,val)>
<!ELEMENT coord (#PCDATA)>
<!ELEMENT val (#PCDATA)>
<!-- -->

Example datum: weight in pounds at 11 months

<obsSeries name="weight" coordDesc="age"
coordUnits="months" valDesc="numeric" valUnits="pounds">

<cvPair>
<coord>
11
</coord>
<val>
23
</val>
</cvPair>
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abstract class VblD

CenVbl

CmpltVbl

WerrVbl

IncmpltVbl

e
x
t

method :

accept( OpOnVblI ask )

ForCen

ForCmplt

ForIncmplt

ForWerr

c

o

n

t

r.

:implement

RegrOnV(X, ...)

Summary()

PlotVsV(X,...)

Figure 4: Some Java classes/interfaces for statistical modeling. CenVbl, etc. extend
the abstract class VblD, and the interface OpOnVblI specifies the contract that all
VblD-applicable
operations must have explicit methods for censored, incomplete, etc. data types.
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