Random Number Generation for
Parallel and Threaded Programs

Gregory R. Warnes

March 22, 1999




Overall Goals

e Valid inference

e Reproducibility

e Efficiency




Necessary Features

e Non-overlapping

e Independent




Desirable Features

e Reproducibility
e Efficiency

e Simplicity




Current Language Approaches

Leave it to the User R, S, Splus, HPF, ZPL, ...

Single Random Number ”Server” Java




Current User Approaches

Naive Users don’t realize there is a problem

—= no change.

Knowledgeable R, S, Splus users use a

different seed for each process.

High Performance Computing Community
use offsets of a known separation in the

stream.




Problems with Current User
Approaches

Naive Users: No Change

e non-independent, often identical, random

streams

e seriously jeopardizes validity of inference.




Problems with Current User
Approaches

Knowledgeable Users: Separate seed for each

Process

e difficult to choose seeds that ensure

independent and non-overlapping streams




Problems with Current User
Approaches

HPC Community: Use offsets of known

separation

e Known separation does not guarantee

independence.

e Long simulations (fast computers) may
require random numbers that exceed the

separation.

e Not practical for all generators.




Problem with ”Singe Source”

(JAVA) Approach

e sequence obtained by each thread is

non-deterministic

e depends on the exact order of calls among

threads, which depends on non-deterministic

system timings.

10



My Approach to Parallel Random
Number Generation

Idea: Use a different random number generator

for each process.

How: Use fixed generator form, with different

“magic constants”

Implementation: Parallel form of Bruce
Collings’ (1987 JASA) random number

generator.

Availability: C code.

11



Putative Properties of Parallel
Collings Generator

e Independent streams
e Non-overlapping

e Reproducible (provided same number of

processes!)

12



