
Proceedings of the 3rd International Workshop

on Distributed Statistical Computing (DSC 2003)
March 20–22, Vienna, Austria ISSN 1609-395X

Kurt Hornik, Friedrich Leisch & Achim Zeileis (eds.)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

iPlots
High Interaction Graphics for R

Simon Urbanek Martin Theus

Abstract

This paper describes the integration of interactive statistical graphics within
R using state-of-the art R-connectivity. The iPlots project uses SJava to deliver
interactive plots for R and an associated framework for their customization.
The graphical part of iPlots is implemented in Java. The design is discussed
and some practical examples of iPlots are illustrated.

1 Introduction

The gap between interactive statistical graphics software and command-line driven
analysis tools is still unbridged. Both kinds of software developed further and
further over the last years, basically ignoring the other side. Projects like R/ggobi
(Swayne, Temple Lang, Buja, and Cook, 2001) connect both types of software,
but still run two applications alongside, forcing the user to be familiar with two
environments to work in. Tools such as KLIMT use R just as a calculation engine
(Urbanek, 2002), completely avoiding a direct use of the command-line interface.
iPlots go the other way round. High interaction plots implemented in Java are
directly accessible within R, using SJava interface.

Interactivity comprises the standards of linked highlighting between graphical
objects in the plots as well the interactive modification of plot parameters.

2 Design

One of the main concerns in the design of iPlots was to retain a flat learning curve,
while providing most features expected to be supported by interactive graphics.
The key feature of interactive plots is the ability to use linked highlighting and
color brushing. Linked highlighting is the concept of reflecting the selection of cases
in one plot in all other linked plots. Within iPlots all linked plots are updated
immediately after the selection was performed. Color brushing provides a way of

New URL: http://www.R-project.org/conferences/DSC-2003/

http://www.R-project.org/conferences/DSC-2003/

Proceedings of DSC 2003 2

changing the color of symbols representing individual cases. Typical use is to set
colors corresponding to groups of interest for easy identification.

In order to be able to link plots, we need to introduce a concept of a data
set. All plots working on the same data set are automatically linked. Since linked
highlighting and brushing work on case level, it is necessary to distinguish which
plots contain data that can be linked together. The classical R plot commands don’t
support any such concept, because all plots are unrelated to each other. Changes in
one plot have no effect on others. Furthermore values of any origin, different data
sets or ad-hoc created values, can be used to construct a single plot.

> library(iplots)

> names(tipping)
[1] "Total.Bill.in.USD" "Tip.in.USD" "Sex"
[4] "Smoker" "Day" "Time"
[7] "Size.of.Party" "Tip.in.perc.of.Bill"

> attach(tipping)

> iplot(Total.Bill.in.USD, Tip.in.USD)
> ihist(Tip.in.perc.of.Bill)
> ibar(Sex)
> ibar(Smoker)
> ibar(Size.of.Party)

> iplot.list()
[[1]]
ID:1 Name: "Scatterplot (Total.Bill.in.USD : Tip.in.USD)"

[[2]]
ID:2 Name: "Histogram (Tip.in.perc.of.Bill)"

[[3]]
ID:3 Name: "Barchart (Sex)"

[[4]]
ID:4 Name: "Barchart (Smoker)"

[[5]]
ID:5 Name: "Barchart (Size.of.Party)"

> iplot.set(1)

> l<-lowess(Total.Bill.in.USD, Tip.in.USD)
> ilines(lx, ly)

> ids<-iset.selected()

> ls<-lowess(Total.Bill.in.USD[ids], Tip.in.USD[ids])
> ilines(lsx, lsy, col="#00FF00")

R environment iPlots environment
(JAVA)

…
iPlot 1

iPlot 2

iPlot 1

iPlot 2

iPlot 3

iPlot 1

iPlot 2

iSet 1

iSet 3

iSet 2

…

iObj 1

iObj 2

iObj 1

iObj 1

iObj 2

iObj 3

…

Figure 1: Within iPlots every iPlot is linked to (exactly) one iSet. iSets build the
framework for linked (attribute) highlighting.

In iPlots every plot is linked to exactly one data set called iSet. Each iSet consists
of an arbitrary number of variables, each represented by a vector. Each iSet requires
that all variables of the iSet are of the same length to allow linking at case level. The
iSets are managed automatically upon the use of any iPlot. Every iPlot command
creates variables in the current iSet . The iSets can be explicitly changed in a similar
way devices are managed in R. The current iSet can be changed by the iset.set
command. The iPlots library automatically creates a default iSet upon startup. The
user can explicitly create a new iSet with the iset.new command, otherwise a new
iSet is created implicitl when the data vector passed to a new iPlot is of different
length than the current iSet contents.

The iPlots package offers a variety of interactive plots, including histograms,
bar charts and scatter plots in the first release of iPlots. Other plots like mosaic
plots, parallel coordinates and maps will follow in future releases. All plots support
interactive features, such as linked highlighting, interactive modification of plot

Proceedings of DSC 2003 3

parameters or querying. Every iPlot is represented by an object in R. This object can
be used to modify plot parameters programatically. Typical examples are changes
of the axis scales, setting plot parameters, assigning case colors or selecting cases.
This enables the user to perform complex manipulations or create animations.

All currently displayed plots are accessible by the values of the list returned
by the iplots.list command. For convenience the concept of a current plot was
implemented as well. If no plot object is specified while performing plot modification
operations, the modification is applied to the current plot. A newly created plot
becomes automatically the current plot. The iplots.set command can also be
used to make any specified plot current.

The actual implementation of the iPlots is done in Java. The iPlots library uti-
lizes the SJava interface, which is a part of the Omegahat (Temple Lang, 2000)
project. That interface allows the use of Java code in R. We chose Java for the im-
plementation, because of its platform independence, object orientation and graphics
capabilities. The interface between Java and iPlots is completely hidden from the
user, therefore no Java knowledge is necessary to use iPlots.

Another key aspect of the iPlots is the extensibility on R level. All iPlots allow
the user to modify the plots by adding new graphical objects such as lines, polygons,
points or text. The interfaces to all these features is entirely defined in R, again
no Java knowledge is necessary. This toolkit allows the user to enhance the plots
in many ways, such as adding regression or smoother curves to scatter plots, or
adding extra labels. The customized graphics are persistent and respect interactive
updates of the plots, such as the change of the plot size or axis coordinates. All
added objects can be accessed from R, modified or removed.

Although the main purpose of iPlots is to introduce exploratory data analysis
capabilities to R, each plot can be exported in publication-quality vector-based
representation to Encapsulated PostScript (EPS) format. Such files can be included
in documents or even further edited by several graphics or design software.

3 On the interface

The implementation of iPlots pursues two main goals:

• Seamless integration in R

• Consistent user interface for iPlots with a flat learning curve.

3.1 Seamless integration

iPlots should be used in R just as any other plot, with the additional benefit of
interactivity. The naming convention for iPlots follows the basic scheme of just
adding an ”i” as a prefix to the known plots in R. For instance to plot an interactive
histogram we issue the command ihist(...) instead of hist(...). In the first
release of iPlots, only the most important options of the plot commands are sup-
ported. Additionally not all plot options may be sensible any more in an interactive
environment. The most important features, supported by all iPlots are:

1. Setting scales and titles of axes and plot.

2. Specification of colors for subgroups with the col=... option.

Proceedings of DSC 2003 4

3. Adding lines, points and labels to plots

A crucial point of iPlots is the consistent mapping between case-ids when using
linked highlighting. Since the relationship between plots based on the same data
is not known in R, the user may open different iPlots which do not belong into the
same relation. One solution to this inconsistency would be to force the user to
gather all data which might be used within the same relation in a dataframe-like
structure. This would obviously guarantee the consistency of linked highlighting,
but leads to a certain administrative overhead on the user side.

We chose a different way, in order to make iPlots as easy to use as possible.
Whenever the user opens an iPlot, the length of the data vector is compared to the
length of the data vector of the current iPlot. Are the vectors of identical length,
the new iPlot is added to the relation of the current iPlot. To avoid errors, a dialog
is presented, whenever the length of the vectors differ, asking whether a new iPlot
relation shall be created or not.

3.2 Flat learning curve

The interactive features inside iPlots are not part of any R functionality and thus
new to the user. To avoid lengthy user manuals and help files iPlots comply to a
very strict user interface convention. Thus the user only needs to learn very few
interactions in order to be able to use any plot of the iPlots suite interactively. These
interactions comprise:

• Simple mouse click: Select (highlight) object at mouse position

• Drag-box: Highlight all objects in the selected rectangle

• Control -mouse-over: Display information of an object (query operation). Add
Shift to obtain extended query revealing more details.

• Meta drag-box: Zoom in on this region (on system not supporting a meta
key, i.e. Windows, the middle mouse button is used)

• Meta click: Zoom out to the view displayed before last zoom in

• Alt-drag: Move selected object to its new position

For the selection interactions, the following modifiers are defined, i.e. a selection
performed with the modifier key pressed, will add this selection to the current
selection using a binary logical operator.

• Shift-select: The newly selected points are combined with the currently se-
lected points via XOR.

• Alt-Shift-select: The newly selected points are combined with the currently
selected points via NAND, that is all newly selected points are removed from
the previous selection.

Note, that not all interactions may be available for all plots. There may be iPlots
where the zooming operation is not sensible at all. Some platforms don’t support
Alt+click, because the combination is used internally by the windows manager.
Therefore the functionality of Alt and Ctrl is swapped for platforms using X11.

Proceedings of DSC 2003 5

4 A sample session

We will use a very brief case study of the tipping data set (Bryant and Smith,
1995) to illustrate the use of iPlots. The data set consists of 244 tips recorded by a
waiter over the course of 4 days at a restaurant in a shopping mall. The following
transcript of an R session shows how the relationship between bill size and tip is
investigated with iPlots. A lowess smoother is superimposed on the scatterplot for
the complete data and the selected subset of all smoker parties.

> library(iplots)

> names(tipping)
[1] "Total.Bill.in.USD" "Tip.in.USD" "Sex"
[4] "Smoker" "Day" "Time"
[7] "Size.of.Party" "Tip.in.perc.of.Bill"

> attach(tipping)

> iplot(Total.Bill.in.USD, Tip.in.USD)
> ihist(Tip.in.perc.of.Bill)
> ibar(Sex)
> ibar(Smoker)
> ibar(Size.of.Party)

> iplot.list()
[[1]]
ID:1 Name: "Scatterplot (Total.Bill.in.USD : Tip.in.USD)"

[[2]]
ID:2 Name: "Histogram (Tip.in.perc.of.Bill)"

[[3]]
ID:3 Name: "Barchart (Sex)"

[[4]]
ID:4 Name: "Barchart (Smoker)"

[[5]]
ID:5 Name: "Barchart (Size.of.Party)"

> iplot.set(1)

> l<-lowess(Total.Bill.in.USD, Tip.in.USD)
> ilines(lx, ly)

> ids<-iset.selected()

> ls<-lowess(Total.Bill.in.USD[ids], Tip.in.USD[ids])
> ilines(lsx, lsy, col="marked")

Proceedings of DSC 2003 6

Figure 2: A set of 5 iPlots. The group of all smokers has bee selected in the lower
right barchart. All other plots reflect this selection. The scatterplot has a lowess
smoother superimposed for all points and the selected points.

5 Function summary

5.1 Plots

The syntax of the iPlot functions was designed to be as close as possible to the
syntax of the corresponding R plot. Parameters of the same name as in R-plots have
the same meaning, unless stated otherwise. All iPlot functions listed below can be
used without data specification, in which case the parameters of the current iPlot
(see iplots.cur()) are changed. Most parameters are optional and have default
values, which are often omitted here for brevity reasons. Consult the supplied online
documentation for details. The goal of this section is to give a quick overview of
the features and the interface.

• Histogram:
ihist(x, breaks, col, bwidth, anchor, right, border, main,
xlab, ylab, xlim, ylim)
Plots an interactive histogram. bwidth and anchor allow to specifically set
the bin width and anchor point of the histogram in data coordinates. bwidth
and breaks are mutually exclusive, bwidth has higher priority. Only first two
values in the vector version of breaks are used which corresponds to setting
anchor=breaks[1] and bwidth=breaks[2]-breaks[1].

Proceedings of DSC 2003 7

• Scatter plot:
iplot(x, y, col, main, xlab, ylab, xlim, ylim, log)
Plots an interactive scatter plot. Currently the type is always “p”.

• Bar chart:
ibar(data, col)
Plots an interactive bar chart. Unlike the barplot R function, this iPlot
requires the entire factor as the data parameter, because the highlighting
uses linking at the case level.

5.2 Manipulation of plots and data sets

• iplot.set(which = iplot.next())
Change the current iplot.

• iplot.cur()
Returns the current iplot.

• iplot.list()
Lists all iplots.

• iplot.next(which = iplot.cur())
Returns the next iplot in the list. The list is circular.

• iplot.prev(which = iplot.cur())
Returns the previous iplot in the list.

• iplot.data(id=NULL)
Returns the content of the plot data variables. If id is NULL then the content
of all variables is returned form of a list, otherwise the content of a variable
at the index id is returned (e.g. for scatter plot id=1 is x and id=2 is y).

• iplot.opt(..., plot = iplot.cur()) Sets options or parameters of the
plot. The possible options can include those specified in the initial plot invo-
cation. If no options are supplies, the function returns a list of plot parameters
and their values.

• iset.new(name = NULL, data = NULL)
Creates a new iSet and makes it current. The iSet is assigned a name of the
form “data.#”, where # is an unique ID. If a data frame is specified as data
then all variables from the data frame are put in the iSet along with their
names. It is the preferred method of creating iSets if the data for the plots
are organized in a data frame.

• iset.set(which = iset.next())
Change the current iSet.

• iset.cur()
Returns the current iSet.

• iset.list()
Lists all iSet.

• iset.next(which = iset.cur())
Returns the next iSet in the list. The list is circular.

Proceedings of DSC 2003 8

• iset.prev(which = iset.cur())
Returns the previous iSet in the list.

5.3 Selection and color brushing

• iset.select(what, mode="replace")
Selects cases specified by what, which can be either a logical vector used as
a mask or a numeric vector used as list of IDs. mode specifies which logical
operation should be applied relative to the existing selection.

• iset.selected()
Returns a vector of selected cases as IDs.

• iset.col(color=NULL, what="all")
Brushes specified cases with color. what can be either a list of IDs, a logical
vector or the string "all". If color is a scalar or shorter that the number of
cases to paint, then it is repeated in a circular fashion. 0 means no color as-
signed. NULL is used when no parameters are supplied and results in returning
a vector of case colors.

5.4 iObjects toolkit

Every iPlot can have an arbitrary number of additional graphical objects attached,
such as lines, rectangles, polygons or labels. Those objects, called iObjects, appear
in the plot graphics and are programmable as of shape, position and color.

• ilines(x, y=NULL, col=NULL, fill=NULL, ...)
Takes given coordinates and joins the corresponding points with line segments.
The resulting iObject is a polygon or a polyline. The color of the lines can be
specified as well as the fill color of the enclosed area.

• iabline(a, b, ...)
Creates a line with the specified intercept and slope.

• itext(x, y=NULL, labels = seq(along = x), ...)
Adds given text labels as an iObject to the plot at specified coordinates.

• ipoints(x, y=NULL, col=NULL, ...)
Creates a new iObject which draws a sequence of points at the specified coor-
dinates.

• iobj.list(plot = iplot.cur())
Lists all iObjects of the plot.

• iobj.cur(plot = iplot.cur())
Returns the ID of the current iObject of the plot.

• iobj.rm(obj = iobj.cur())
Removes the iObject obj from the associated plot.

• iobj.set(obj)
Make obj the current iObject.

Proceedings of DSC 2003 9

• iobj.opt(...,obj=iobj.cur())
Sets options and properties of the given iObject. The parameters are object-
dependent. Usually most parameters available at creation time are supported
as well.

5.5 Event handling

iPlots offer some basic functions to make interaction between iPlots and R more
flexible. These functions can be used to build animations and small interaction
loops in R.

• ievent.wait(...)
This function waits until an iPlots event occurs. The result is NULL for the
break event.

• iset.sel.changed(iset=iset.cur(),...)
Returns TRUE if the selection of the specified iSet changed since the last call
of this function.

The following example illustrates the functionality:

iplot(x, y)
iabline(lm(y ~ x), col="black")
iabline(0, 0, col="marked", visible=FALSE)
while (!is.null(ievent.wait())) {
if (iset.sel.changed()) {
s <- iset.selected()
if (length(s)>0)
iobj.opt(reg=lm(y[s] ~ x[s]), visible=TRUE)

else
iobj.opt(visible=FALSE)

}
}

This piece of R code creates an interactive scatterplot of x and y with a linear
regression line. Until the user uses “break” in iPlots, the inner loop re-calculates
and re-displays a regression line for the selected points each time the user selects
points in any of the iPlots. If no points are selected, the second regression line
disappears.

The current event handling API is just the first step towards fully customizable
interaction between iPlots and R. In the future we plan to provide a more flexible
interface, where the user can register individual functions to be called upon specific
events. At this point we prefer stability and platform independence over features
which don’t work properly, therefore we don’t expose callbacks functionality of the
SJava interface. This is not a conceptual limitation, therefore we will make the
extended API public as soon as it meets our requirements.

6 Outlook

Future releases of iPlots will implement more plots like mosaic plots, parallel coor-
dinate plots and maps.

Proceedings of DSC 2003 10

Another extension is to offer the ability to add not only static objects, as in
the current release, but interactive objects. Those objects such as points, lines and
rectangles have the following basic properties: Interactive objects ...

• are associated to an iPlot, and keep a list of case ids, they represent.

• can be selected

• support linked highlighting

It is possible to build simple interactive graphics with these interactive objects.
In contrast to the built-in iPlots, plots created with the help of such interactive
objects do not offer additional interactive features beyond the standard selection
and highlighting capabilities.

7 Conclusion

iPlots are a first step towards a seamless integration of interactive statistical graphics
into R. iPlots implement all important interactive features, such as linked highlight-
ing, multiple views, queries and interactive change of plot parameters.

The primary design goal for iPlots was a flat learning curve for users acquainted
with R. The commands of the iPlot API follow the common R structures as close
as possible. In order to facilitate selection and linked highlighting among different
plots the concept of iSets has been introduced. Commonly used modifications to R
plots such as lines, points and abline are implemented for iPlots as well.

In contrast to the static plots in R, iPlots can not be fine-tuned using various
parameters of the par() command. We deliberately tried to avoid the concept of
global graphical states. Only the most important options like xlim, ylim, main,
xlab, ylab and col are supported on per-plot basis. The number of currently
available plots is restricted to scatterplots, barcharts and histograms, but the list
will be extended in near future.

Currently the iPlots package is not yet available on the CRAN. Please consult
the iPlots project web pages for the latest information:
http://stats.math.uni-augsburg.de/iPlots

Acknowledgements

Parts of this paper and work on iPlots has been supported by the statistics depart-
ment of Iowa State University.

References

P. G. Bryant and M. A. Smith. Practical Data Analysis: Case Studies in Business
Statistics. Richard D. Irwin Publishing, Monewood, IL, 1995.

D. Swayne, D. Temple Lang, A. Buja, and D. Cook. GGobi: XGobi redesigned and
extended. In Proc. of the 33th Symposium on the Interface: Computing Science
and Statistics, 2001.

D. Temple Lang. The Omegahat environment: New possibilities for statistical
computing. JCGS, 9(3), 2000.

http://stats.math.uni-augsburg.de/iPlots

Proceedings of DSC 2003 11

S. Urbanek. No need to talk to strangers - cooperation of interactive software with
R as moderator. In Proc. of the 34th Symposium of the Interface of Computing
Science and Statistics, 2002.

Affiliation

Simon Urbanek, Martin Theus
Department of Computer Oriented Statistics and Data Analysis
University of Augsburg
Universitätsstr. 14
86135 Augsburg
Germany
E-mail: simon.urbanek@math.uni-augsburg.de, martin.theus@math.uni-augsburg.de

mailto:simon.urbanek@math.uni-augsburg.de
mailto:martin.theus@math.uni-augsburg.de

	Introduction
	Design
	On the interface
	Seamless integration
	Flat learning curve

	A sample session
	Function summary
	Plots
	Manipulation of plots and data sets
	Selection and color brushing
	iObjects toolkit
	Event handling

	Outlook
	Conclusion

