
Proceedings of the 3rd International Workshop

on Distributed Statistical Computing (DSC 2003)
March 20–22, Vienna, Austria ISSN 1609-395X

Kurt Hornik, Friedrich Leisch & Achim Zeileis (eds.)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

Rasp: A Package for Spatial Statistics

Barry Rowlingson
Lancaster University

Adrian Baddeley
UWA

Rolf Turner
University of New Brunswick

Peter Diggle
Lancaster University

Abstract

This paper describes the development of a new R package for spatial data
and statistics. We review existing packages that deal with spatial information
and comment on how they handle the basic data. Our goal is then to construct
a unifying spatial data structure that can form a base for any spatial statistics
packages.

We build on our experience with earlier packages – spatstat (http://www.
maths.uwa.edu.au/~adrian/spatstat.html) and splancs (http://www.maths.
lancs.ac.uk/Software/Splancs/) – to produce a package with extensive
data-manipulation and statistical functionality. An object-oriented design is
used throughout to abstract functionality from any implementation specifics,
but we take care to present the user with simple functions that have sensible
defaults. The paper is as much a technical document on package design as it
is a story of how such a package evolves from the ideas of the authors.

The basic functionality deals with coordinates and associated attributes
of each coordinate. The coordinates may be Cartesian spatial locations in up
to three dimensions, together with an optional temporal location to handle
space-time data. Data structures and methods for polygonal regions are also
implemented.

Currently we have functions for spatial point-pattern analysis derived from
spatstat and splancs. The geostatistical functionality of the geoR package
can be easily integrated, as well as other packages currently in the CRAN.

New URL: http://www.R-project.org/conferences/DSC-2003/

http://www.maths.uwa.edu.au/~adrian/spatstat.html
http://www.maths.uwa.edu.au/~adrian/spatstat.html
http://www.maths.lancs.ac.uk/Software/Splancs/
http://www.maths.lancs.ac.uk/Software/Splancs/
http://www.R-project.org/conferences/DSC-2003/

Proceedings of DSC 2003 2

1 Spatial statistics

Spatial statistics covers any branch of data analysis that uses locations. Simple
data could be locations of trees in a forest together with their species and height,
populations of different regions within a country, measurements of soil pH sampled
over a field, or the positions of cell nuclei observed under a microscope. More
complex data could involve a number of coordinates for each entity, such as tracking
data from a number of individually identified animals. In this example we could
also have the time of each tracking point, giving an example of a space-time dataset.

The book Statistics for Spatial Data (Cressie, 1993) is a good reference on spatial
statistics. It discusses most of what is included in our code, except for some of the
functions that are on the leading edge of statistical methodology. Other spatial
statistics books are available.

2 R/S spatial statistics packages

There are many packages for R/S that deal with spatial data. Some are full packages
with data manipulation, display, and analysis routines. Others are single-purpose
codes, often a simple R/S wrapper round some C or FORTRAN subroutines. This
seems to be because most R and S development occurs in the academic field where
leading-edge analytical routines are of interest, and so we end up with small packages
that do technical things with little common basic functionality. One of the original
goals of splancs was to provide those basic routines. Now with new functionality
in R we feel a new spatial base is required.

Spatial statistics for R has been well-featured in the R newsletter, for example
in Ripley (2001) and Bivand (2001), where many packages that handle spatial data
are reviewed.

There are also a great number of packages for R that deal with spatial data,
not necessarily statistically, but interfacing with external mapping programs, li-
braries, or datafiles. A web site for collecting all this material together is at
http://r-spatial.sourceforge.net/.

2.1 splancs and spatstat

The splancs package was probably one of the first spatial data packages written
for the S language. It was initially developed under S-PLUS 2.3, and has received
only minor upgrades and extensions since then. The port to R was done by Roger
Bivand.

spatstat was written for the display and analysis of point-pattern data. It deals
with points and the polygonal regions in which they are found. It was written for a
more recent version of the S language than splancs, and so uses some of the more
modern features, such as objects and formula notation.

It stores points in ppp objects. Since the polygonal area, or ‘window’, is such an
intrinsic part of a realisation of a point pattern, there must be a specification of the

http://r-spatial.sourceforge.net/

Proceedings of DSC 2003 3

region in the ppp object. The implementation also allows a single ‘mark’ variable
to be associated with each point.

Spatial data in splancs is restricted to 2-dimensional spatial data, although
there are a few functions that deal with space-time data. The package uses 2-
column matrices for storing points, and any temporal data should be stored in a
separate vector. More complex data structures were not implemented in S-PLUS at
the time.

Analysis routines in splancs concentrated on applications in environmental epi-
demiology, and included nearest-neighbour and second-order point pattern statis-
tics, as well as model-fitting for “raised incidence” around a specified point. The
spatstat analytical focus appears to be more toward development of cutting-edge
point-process modelling, but includes many of the simpler descriptive tools that
make the package much more rounded.

As an illustration we will examine one of the nearest-neighbour calculations as
a comparison between packages. This will compute the distribution of nearest-
neighbour distances from one set of points to another.

2.1.1 spatstat

First we generate a ppp object using the spatstat function for a uniform Poisson
process. Then we assign marks of 0 and 1 to the data at random. After computing
the distribution of the distances from type-0 points to the nearest type-1 point we
plot the value for the uncorrected, ‘raw’ estimate:

> pp <- runifpoispp(100)
> pp$marks <- factor(sample(0:1, pp$n, replace=TRUE))
> Gx <- Gcross(pp,0,1)
> plot(Gxr,Gxraw)

Several things are happening here that are invisible to the user at first. spatstat
tries hard to give default values to arguments wherever possible, simplifying the
calling sequence. The Gcross() call needs a window in which to do edge corrections
for some of the estimators, and since we don’t supply one it uses a default of a unit
square centred on (0.5, 0.5). Also it has computed the distribution using a range
of distances to span the data. This distance range can be supplied but a default is
computed otherwise.

The returned object is a data frame with the distance values as the $r component
and several other columns including different estimators of the distribution. It also
includes the theoretical value for Poisson processes with the same intensity.

2.1.2 splancs

To illustrate the same calculation in splancs we will use the same data by extracting
it from the ppp object. We will construct two matrices for the two different sets
of points, and use the distance values returned by Gcross() as the domain of the
calculation of the distribution.

Proceedings of DSC 2003 4

> xy0 <- cbind(ppx,ppy)[pp$marks==0,]
> xy1 <- cbind(ppx,ppy)[pp$marks==1,]
> F10 <- Fhat(xy1,xy0,Gx$r)
> lines(Gx$r,F10)

Note that the splancs function is called Fhat(), and the ordering of the defi-
nition of the points is reversed compared to spatstat. The distance scale must be
specified since splancs will not supply a default. The Fhat() function only returns
the ‘raw’ estimate of the distribution, and so does not require a window for edge
corrections. The return value is a vector of the same length as Gx$r.

3 Rasp design thoughts

Initial development of Rasp took place in Perth during August 2002 by Adrian
Baddeley, Rolf Turner and Barry Rowlingson. It soon became clear that there was
a fundamental difference between what the authors were trying to achieve. Adrian
and Rolf were still thinking of a package for spatial point-pattern analysis, whereas
Barry had in mind an initial lower-level codebase on which more spatial statistical
functionality could be built. Certainly the spatstat ppp data structure was too
closely tied to the point-pattern methodology to be of much use in other areas, for
example in geostatistics, where there may be no meaningful polygonal region. There
was also considerable discussion over terminology since the information associated
to a point in point-pattern analysis is known as a ‘mark’, whereas such information
in a modelling context could accurately be called a covariate. Similarly the region
in which a point-pattern exists is known as the ‘window’, but this is too specific a
term for a general polygonal region in space.

After some considerable discussion and much mutual education into spatial
statistics and software engineering, a short design for how the code should work
was drawn up.

4 Data for spatial statistics

There seem to be as many ways of storing spatial point data as there are packages
for manipulating them. What structure should we choose for Rasp? The simple two-
column matrix? The data frame with $x and $y components? Instead we chose none
of these. We do not enforce any structure on the data fed to Rasp routines – instead
we make the condition that the object must implement a method, sp.coords, that
returns the coordinates. It is then left up to the object to return the coordinates
as it sees fit.

To illustrate this we define a spatial data frame, and show how sp.coords works
in this context. Suppose we have some quantities sampled at a number of locations.
This information is read into a data frame in the usual way. We then create a
spatial data frame by giving it coordinates using the sp.coords<- method:

> water <- read.table("water.dat")
> sp.coords(water) <- cbind(water$x,water$y)

Proceedings of DSC 2003 5

This has modified the object’s class. It now displays with the coordinates added
to the data frame:

> class(water)
[1] "spatial.data.frame" "data.frame"
> water

coords x y z1 z2 z3
1 (25.7307, 1.20804) 25.73072 1.208041 -13 0.25666607 0.1330937
2 (90.0111, 33.6031) 90.01106 33.603051 18 -1.89270100 1.4347811
3 (96.8213, 66.4864) 96.82130 66.486440 12 -1.59967112 -2.4597535
4 (91.881, 24.9425) 91.88104 24.942455 -5 1.73899873 2.6009416
5 (95.8498, 18.917) 95.84980 18.916989 -12 -0.92256835 -0.6764757
6 (16.0386, 31.5343) 16.03858 31.534267 -5 1.07900015 -1.1096188
7 (81.864, 84.2214) 81.86399 84.221355 3 -3.21402785 2.5181521
8 (17.2057, 79.7311) 17.20568 79.731139 -18 0.59890535 4.5298231
9 (71.3799, 94.1818) 71.37992 94.181840 -2 0.13862134 0.5545065
10 (23.2602, 52.8181) 23.26015 52.818109 -3 0.01097744 1.7003302

Now that we have created this object, its behaviour will be slightly different
from a normal data frame. For example the plot method will display a dot-
map of the locations. To get the usual plot method for the data frame requires
plot(as.data.frame(water)). Subscripting rows and columns from the object
returns another spatial data frame with changed dimensions. Other features of
data frames, such as dim() or names() work as expected, and you can even use it
in a glm function with the data= parameter and put the names in the formula.

But what have we gained from this? Firstly, the coordinates are freed from the
restriction of being called x or y, and these names are now free to be used in the
data frame for other purposes. Also, you may have data that has several coordinates
associated with each data point (such as a birth location and a death location), and
you can assign each one to sp.coords when you want to work with that as the
location. But perhaps the biggest win with this scheme is that you can feed this
object to a Rasp function and it will get the coordinates.

This mechanism can be extended to almost any class of object. Suppose you have
data that forms a ragged list, with different numbers of values for each data point.
We could implement a spatial list object, and as long as an sp.coords method is
implemented for that class then all the Rasp functionality will be available to it.
There is no need to coerce it to a spatial point type.

A default method for sp.coords will mop up cases where an object with no
class is passed, such as two-column matrices or lists with no other geographic data
apart from a $x and $y component. This way the user can either adopt the simple
route of keeping spatial data in simple vectors and matrices, or build other objects
such as data frames and store the spatial data for each item within it.

Proceedings of DSC 2003 6

5 Point-pattern analysis routines

To illustrate the thinking behind the Rasp point-pattern analysis routines we use
the same nearest-neighbour calculation as before.

Firstly we demonstrate a function that enables the computation to be done in
a manner similar to the splancs way of doing things. This takes two objects from
which coordinates are extracted (using sp.coords()) and also needs a window and
distance scale. We take the distance scale from the earlier example.

> Gxy2 <- G.biv2(xy0,xy1,rectangle(),r=Gx$r)

Although we have re-used the xy0 and xy1 objects from the splancs example,
these could be any objects that return meaningful values with the sp.coords()
function, such as spatial data frames.

If all the locations are stored in a single spatial data frame with mark variables,
it is more convenient to use the G.biv() function, and use the marks to specify
the two classes of points. Here we construct a spatial data frame from the old
ppp object and use a formula to specify from which points we are computing the
nearest-neighbours:

> pps <- spatial.data.frame(data.frame(Type=pp$marks),
coords=cbind(ppx,ppy))

> Gsx <- G.biv(pps,~Type==0,r=Gx$r,window=rectangle())

Note that this computes nearest-neighbour distances for type-0 points to all
non-type-0 points (in this case the type-1 points). If the data has more complex
markings, then two formulae can be given to specify the partition of the points.
The following example is exactly equivalent to the previous one if there are only
type-0 and type-1 events in the data:

> Gsx <- G.biv(pps,~Type==0,~Type==1,r=Gx$r,window=rectangle())

In fact these two arguments can be almost any expression that evaluates to a
logical vector of the same length as the number of points in the first argument. Here
we generate a random partitioning of the points into type-0 and type-1 points and
compute the nearest-neighbour distribution again:

> npart <- sample(0:1,npts(pps),replace=T)
> Gp1 <- G.biv(pps,npart==0,r=Gx$r,window=rectangle())

We have tried in Rasp to make the analysis routines as flexible as possible.
Thanks to the object-oriented way of getting coordinates from objects they can
work on simple matrices and lists or more complex data structures.

6 Higher dimensions and space-time data

We can extend our 2-dimensional framework to accommodate further spatial di-
mensions and a temporal dimension. We do this by adding an extra argument to

Proceedings of DSC 2003 7

the sp.coords() function to specify which axes we are dealing with. For example
we can set up an object to have 2-dimensional spatial coordinates and a single time
coordinate like so:

> sp.coords(foo,’xyt’) <- cbind(x,y,t)

When a function wishes to get the spatial coordinates for this object it can
do sp.coords(foo), and to get the temporal locations it can call the function as
sp.coords(foo,’t’). For three-dimensional data we use ‘xyz’, and can set or get
individual components:

> sp.coords(foo,’xyz’) <- cbind(x,y,z)
> hist(sp.coords(foo,’z’))

This scheme means that functions can get the dimensionality of data that they
require from the supplied objects without having to worry about the internal ar-
rangement of the objects.

7 Functionality

Rasp currently has support for the following functions – most of which have been
taken from spatstat and splancs:

• Spatial Data – Create spatial data frames, point-pattern objects, transla-
tions, rotations, shifts etc. Create spatial windows as rectangles, polygons,
binary raster grid masks.

• Graphics – Display points with correct aspect ratio. Display spatial windows.

• Point-pattern analysis – F-, G-, and J- nearest-neighbour analyses. Rip-
ley’s K-function, inhomogeneous K-function. Edge corrections.

• Point-pattern model-fitting – maximum pseudo-likelihood fitting for a
wide range of models. Include trends and edge corrections.

8 Future developments

Development of Rasp is currently stalled, and possibly will not be restarted. The
spatstat package is still in development, and so the statistical side of Rasp is now
behind spatstat in functionality. Also there has been a new development of spatial
data classes as a separate package called r-spatial (http://sourceforge.net/
projects/r-spatial/). These classes cover the main functionality of spatial data
frames, and are written using the new S4 object-oriented methods. We envisage
that these classes will be used for spatial data in the future, and that statistical
packages should be converted to use them.

A meeting intended to kickstart programming on this project is scheduled for
Lancaster in November 2004. By this time the classes should be developed and

http://sourceforge.net/projects/r-spatial/
http://sourceforge.net/projects/r-spatial/

Proceedings of DSC 2003 8

stable enough to enable their deployment into statistical packages, and the meeting
will concentrate on creating r-spatial versions of such packages as geoR, geoRglm,
spdep and others – all from CRAN (http://www.R-project.org/).

9 Conclusion

The development of Rasp has served to excite interest in spatial classes for R, and
has encouraged the development of the new r-spatial package. The design and
implementation of this package, influenced by the design of spatial data frames in
Rasp, should make it a very useful set of base classes for spatial data in R. While
this was part of the original goal for Rasp, r-spatial takes a more lightweight
approach of separating data structure design from analytical packages which should
ensure its success.

The package is released under the GPL and is available from the Sourceforge
web site via http://www.sourceforge.net/projects/r-asp/.

Acknowledgements

Barry Rowlingson would like to thank Adrian Baddeley for providing the funding
to visit Perth to work on Rasp in August 2002.

References

Roger Bivand. More on spatial data. R News, 1(3):13–17, September 2001. URL
http://CRAN.R-project.org/doc/Rnews/.

N. A. C. Cressie. Statistics for spatial data. Wiley, 1993.

Brian D. Ripley. Spatial statistics in R. R News, 1(2):14–15, June 2001. URL
http://CRAN.R-project.org/doc/Rnews/.

Corresponding author

Barry Rowlingson
Dept of Mathematics and Statistics
Lancaster University
Lancaster, LA1 4YF
United Kingdom
URL: http://www.maths.lancs.ac.uk/~rowlings/
E-mail: B.Rowlingson@lancaster.ac.uk

http://www.R-project.org/
http://www.sourceforge.net/projects/r-asp/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.maths.lancs.ac.uk/~rowlings/
mailto:B.Rowlingson@lancaster.ac.uk

	Spatial statistics
	R/S spatial statistics packages
	splancs and spatstat
	spatstat
	splancs

	Rasp design thoughts
	Data for spatial statistics
	Point-pattern analysis routines
	Higher dimensions and space-time data
	Functionality
	Future developments
	Conclusion

