
Proceedings of the 3rd International Workshop

on Distributed Statistical Computing (DSC 2003)
March 20–22, Vienna, Austria ISSN 1609-395X

Kurt Hornik, Friedrich Leisch & Achim Zeileis (eds.)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

The R.oo package – Object-Oriented

Programming with References Using

Standard R Code

Henrik Bengtsson

Abstract

An easy to install and platform independent package named R.oo, which
provides support for references and mutable objects via a specific class model
using standard R code, has been developed. The root class Object implements
and encapsulates all the mechanisms needed for references in a way such that
object fields are accessed similarly to how elements of a list are accessed with
the important difference that the fields can be reassigned within methods.
The class model also provides an easy way for defining classes that inherit di-
rectly or indirectly from the Object class. Any instance of a class that inherits
from the Object class can be passed to functions by reference. Supplementary
utility functions for defining constructors and methods in a simple and robust
way are also made available. For instance, generic functions are created auto-
matically and if non-generic functions with the same name already exist, they
are, if possible, modified to become default functions. Currently, S3 classes
and S3 methods are defined, but future versions of the package are likely to
support S4 too. We also suggest an R coding convention, which the utility
functions test against, with the intention to bring additional structure to the
source code. The package also extends the current exception handling mecha-
nism in R such that exception objects can be caught based on their class. The
R.oo package has successfully been used in a medium-size microarray project.

Keywords: Object-oriented programming, reference variables, mutable ob-
jects, environments, coding conventions, exception handling, root class, generic
functions, S3, UseMethod.

1 Introduction

The R.oo package is a spin-off product of a larger project for developing a microar-
ray analysis package in R (com.braju.sma; Bengtsson, 2002a), which was designed

New URL: http://www.R-project.org/conferences/DSC-2003/

http://www.R-project.org/conferences/DSC-2003/

Proceedings of DSC 2003 2

to be used by both statisticians who want to develop and test new methods, but also
by other scientists who want to make use of the latest microarray analysis methods
available on a daily bases. Requirements such as scalable and maintainable code,
efficient memory usage, but also a user-friendly environment led us to an object-
oriented design and implementation that made use of references. Moreover, to make
it possible for also non-programmers to easily contribute to the project in a robust
and sustainable way, we decided upon a common coding convention. A well defined
coding convention would then also work as a programming guide for newcomers to
the project. The R.oo package provides a standardized way of programming with
reference via a specific class model, which also allows the user to define new classes
easily. The package also has a mechanism for defining new methods, a mechanism
that automatically asserts that the coding convention is followed.

R allows itself to two different styles of programming with classes. We will re-
fer to the first (and the intended) style, which is found in languages such as S and
Dylan (Shalit, Moon, and Starbuck, 1996), as the function-object-oriented program-
ming (FOOP) style, and the second one, which is found in languages such as Java
and C++, as the class-object-oriented programming (COOP) style. Shortly, the na-
ture of the first style is that methods belong to generic functions (Chambers, 1998)
and the nature of the second style is that methods belong to classes. This difference
has implications on how classes and methods are designed and implemented, but
also technical details such as how methods are dispatched. When methods belong
to classes dispatching is done on one object only, whereas when methods belong to
generic functions dispatching can be done on multiple objects. The latter is natural
when, for instance, binary operators such as the “+” method are to be called. For
another discussion about the two styles in R see Chambers (2002a). We have found
that the COOP style is more useful for high-level designs where large and complex
classes such as microarray data are used and that the FOOP style is more suitable
for less complex data types such as matrices etc. to which we for instance apply
algebraic operators. Moreover, even though the intension is to use the FOOP style,
it is not rare to see hybrid models where it is clear that the programmer thinks of
the methods such that some belong to classes and some belong to generic functions.

In R there are currently two implementations for programming with classes. They
are referred to as the S3 (or S3/UseMethod) style (Venables and Ripley, 1999) and
the S4 style (Chambers, 1998). The S3 style has been supported by R from the
very beginning and support for the S4 style was added with the release of the meth-
ods package (Chambers, 2002b), which became part of the core distribution as of
R v1.4.0 and is loaded by default from R v1.7.0. The intention of both S3 and S4 is
to follow the FOOP style. Although it is possible to call methods based on multiple
arguments in S3 (see for instance help(.Group)), the dominating approach is to
dispatch methods based on the class of the first argument passed to the generic
function. This has opened a door for programming using the COOP style in R.
Even if method definitions in practice are more bound to the corresponding generic
functions in S4 than S3, it is still possible to use S4 for the COOP style.

With references it is possible not only to write more memory efficient code, but also
more user-friendly methods as for instance fewer arguments need to be specified
by the end user. Even though references are often mentioned in relation to the
COOP style, they can equally well be used under the FOOP style. There is also

Proceedings of DSC 2003 3

nothing in the S3 schema or the S4 schema that prevents the idea of using refer-
ences. However, R is a functional language and arguments are supplied to functions
by a pass-by-value semantic, also known as call-by-value. Inside the function, the
arguments behave like local variables and any change made to a value inside the
function is not reflected in the original value. The rational for this is that a function
by definition takes one or several input values, returns something else and it should
never modify the input values. When passing large data objects to a function a true
pass-by-value approach would be too inefficient. To overcome this, an argument in
R is in practice passed by reference as long as the variable is not modified by the
function. As soon as the function is changing the value of the argument, a local
copy of it is created to obtain pass by value. Occasionally there are requests for
adding a true pass-by-reference semantic so that functions can modify the original
object. From now on we refer to such functions as methods and reserve the word
function for its original meaning.

There are different ways to emulate a pass-by-reference semantic in R. An intu-
itive way is to make use of lexical scoping (Gentleman and Ihaka, 2000, see also
demo(scoping)). However, with such an approach each object carries a copy of
every method belonging to its class and all its superclasses. This methods-belong-
to-objects style is a very special case of the COOP style, which we do not find to
be a reasonable approach in real-world applications where class hierarchies with
a large number of methods are commonly used. Another approach is to let reg-
ular R variables represent reference variables and pass these, and not the objects
themselves, to the methods. Using standard language features, e.g. environments,
references can be used to look up the actual instances, which then can be queried
and modified from anywhere. This idea works perfectly well under the FOOP and
the COOP style (and therefore also under both S3 and S4).
A package that provides references is the Omegahat OOP package (Chambers and
Lang, 2001, 2002), which provides programming with classes in an explicit COOP
style. Like R.oo, it makes use of environments to emulate reference and is (cur-
rently) based on an S3 class model, but it has its own built-in method-dispatching
mechanism and a more formal way of defining classes, similar to the one in S4.

When our microarray project started in early 2001 we investigation different op-
tions for programming with references and we found Omegahat’s OOP to be very
promising. However, it was in its early stages, we did not know where it was head-
ing or even if it was going to be supported in the long run. Also, OOP did not
and does not meet our criteria that our microarray package should be straightfor-
ward to install and update1. Moreover, although an explicit COOP-style syntax for
calling methods (see also section 3.3) has several advantages, we have split feelings
about it and we are not convinced that a separate implementation for it is desir-
able. Instead, we exclusively want to make use of the already existing S3 and S4
mechanisms. These are widely used and tested by many, guaranteeing reliability
and high quality. This makes the R.oo package (and the microarray package) as
portable, as maintainable, and as compatible with R (also with future versions) as
possible. Further, contrary to OOP, our object model enforces the use of a common

1To install OOP on non-Unix systems C-code compilation is required, which in turn requires
compilers etc. and this is something we can not expect our microarray end-users to have installed
on their machines. This can of course be solved by providing binaries for different platforms, but
this is currently not done.

Proceedings of DSC 2003 4

root class, which we believe improves the structure of any object-oriented design.

For reasons like the above, but also others, the R.oo package was developed. We
want to underline that the intention is not to replace S3 or S4, but to extend them
with an extra layer to provide reference variables and to make object-oriented de-
sign and programming in R easier and more robust. The outline of this report is as
follows. In section 2, we briefly introduce the special “data type” Object. As this
class implements the functionality for references, any object of a class that inherits
from this root class will be passed to functions as a reference. In section 3, we
describe how to use classes that inherits from the root class Object. Additional
object-oriented features that come with proposed class model are also explained.
To further improve the structure of an object-oriented implementation, we suggest
an R Coding Convention (RCC) in section 4. Another purpose of the package is to
relieve the developer from implementation details to make it possible to focus on
the object-oriented design. In section 5, the utility functions setConstructorS3()
and setMethodS3() are introduced. They create constructor functions and meth-
ods and make sure that required generic functions are created (or not), and at the
same time assert that the RCC is followed. How to use references and how they are
implemented by the Object class is discussed in section 6. The R.oo package also
provides an extended exception handling mechanism, which is described in section 7.
Additional utility functions and classes are briefly described in section 8 and sec-
tion 9, respectively. Limitations of the package and its class model are commented
on in section 10. Section 11 explains how to install the package. Conclusions are
given in section 12.

2 The root class Object

The most fundamental class in the R.oo package is the class named Object. In
addition to providing references, it also provides a way to define new classes. By
enforcing that all classes are derived (directly or indirectly) from the Object class,
we know that there exists a set of methods that are common to all such classes.
This idea exists to some extent in R, but with a common root class it will become
more explicit to the end user. We believe that having a single root class will bring
additional structure to the design as well as the code of any software. Next we will
give a short description of all methods coupled to the Object class. See also figure 1.
For simplicity, we refer to an instance of the Object class or a class that inherits
from it as an Object. Moreover, where it is clear we will when referring to methods
exclude the first argument, which is always an Object.

The method as.character() returns a string with short information about an Ob-
ject. This is the same string that by default is displayed by print().

The print() method prints information about an Object. By default the string
returned by as.character() is printed.2

2Regardless of data type of class, the print() method will be called on any object whose name
is typed at the command line followed by an ENTER, e.g. 3+1 + ENTER calls print(4).

Proceedings of DSC 2003 5

Object

$(name): ANY
$<-(name, value)
[[(name): ANY
[[<-(name, value)
as.character(): character
attach(private=FALSE, pos=2)
clone(): Object
detach()
equals(other): logical
extend(this, ...className, ...): Object
finalize()
getFields(private=FALSE): character[]
hashCode(): integer
ll(...): data.frame
static load(file): Object
objectSize(): integer
print()
save(file=NULL, ...)

Figure 1: UML representation of the root class Object, which all classes should be
derived from directly or indirectly through other classes. ANY is not a defined data
type, but refers to any data type or class.

The method getFields(private=FALSE) returns the name of all fields in an Ob-
ject. By default only names of non-private fields are returned.

The method ll(...) returns a data frame with detailed information about the fields
of an Object. By default only non-private fields are listed. For more details see
section 8.

The hashCode() method returns an integer hash code for an Object.

The objectSize() method returns the (approximate) size of an Object. Compare
this with object.size(), which returns the size of the reference variable and not the
Object.

The equals(other) method compares one Object with another. If they are equal
the method returns TRUE, otherwise FALSE. If argument other is NULL, then FALSE is
always returned. The default implementation of equals() compares the hashCode()
values of both objects.

The clone() method creates an identical copy of an Object3. See also section 6.

When an Object is deallocated from memory by the garbage collector the final-
ize() method is first called. Subclasses can override this method to make sure that
any instances of such classes clean up after themselves. For instance, objects that
allocate shared resources such as connections should make sure that these resources
are closed and deallocated upon deletion.

The methods attach(private=FALSE, pos=2) and detach() attaches and de-

3Doing ref2 <- ref will only create a new reference to the same instance.

Proceedings of DSC 2003 6

taches an Object to and from the search path, respectively. By default only public
fields (private=FALSE) of an Object are attached and by default they are attached
to the beginning of the search path (pos=2) just after the global environment. Any
modification to such attached fields will not be reflected (saved) in the actual Ob-
ject when detach() is called.

The method save(file=NULL, ...) saves an Object to a file (or a connection)
and the static method load(file) loads a previously saved Object and returns a
reference to it.

The somewhat special method extend(...className, ...) extends an Object
(class) into a subclass named according to the string ...className4 and which con-
tains all fields as given by the ... arguments. This method is not intended to be
overridden by any subclass. For more details see section 5.

Finally, as explained in detail in section 6, the functionality for references is hidden
inside the Object class. Hence, all subclasses will support references automatically
and the programmer does not have to think about how reference variables should
be implemented. They are always provided and they always behave in the same
way.

3 Using classes inheriting from the Object class

Throughout this document we make use of a classic case study example to describe
the major parts of the package. For a more extensive case study see Bengtsson
(2002c). Let the class SavingsAccount represents a bank account, which in the
simplest case can be described by its balance. To secure against illegal modifica-
tions of the balance we represent the balance with a private field named .balance.
To obtain the balance of the account the function getBalance() is provided. Using
setBalance(), it is possible to modify the account balance directly, but it is not
possible to set it to a negative balance. More commonly used are the methods
for withdrawal and depositing, i.e. withdraw(amount) and deposit(amount), respec-
tively. The withdrawal method will not accept withdrawals if the balance becomes
negative. Moreover, SavingsAccount inherits from Object. When a SavingsAccount
object is created, the balance will by default be set to zero.

3.1 Creating an object

The implementation of the class is described in section 5, but for now assume that
the usage of the constructor is SavingsAccount(balance=0) and that

account <- SavingsAccount(100)

creates a SavingsAccount object with initial balance 100. The object is referred to
by the reference variable account.

4The second argument to extend() has three dots as a prefix to make it possible to name fields
such as className or similar.

Proceedings of DSC 2003 7

3.2 Accessing fields

The fields of an instance of a class inheriting from root class Object can be accessed
directly in a way similar to how elements of a list are accessed. For example, the bal-
ance field of the account object can the be retrieved by either account$.balance or
account[[".balance"]]. To set the balance of the account either account$.balance
<- newBalance or account[[".balance"]] <- newBalance will do.

Note that there is no way to prevent the access to private fields. However, if
one follows the RCC rule (section 4) that private fields and only private fields
should have a . (period) prefix, it should be clear which fields can be accessed
from outside and which should be accessed only from inside the SavingsAccount
class. Moreover, private fields named this way will, by default, not be listed by
the functions getFields() and ll() (section 2), and neither by ls() (R Language
Definition, 2003).

3.3 Calling methods coupled with a class

Under the S3 schema, a method coupled with a class is called in the same way as
a regular function, but with the object as the first argument. While specifying the
withdrawal and depositing methods above, we excluded the object argument for
simplicity, e.g. withdraw(amount). However, when calling the method one has to
include it, e.g. withdraw(account, amount). The method dispatching mechanism
in S3/UseMethod will then make sure that the method of the correct class will be
called. For more detailed information on how method dispatching is done in S3
see R Language Definition, 2003.

For developers who prefer an explicit COOP programming style, methods can also
be accessed via the $ (or the [[) operator, e.g. account$withdraw(amount), which
is very similar to how Omegahat’s OOP package, but also how other object-oriented
languages such as Java and C++ do it. However, until there is a well defined
standard for doing this in R we do not encourage this style (except for static methods
described next).

3.4 Calling static methods

A static method of a class is a method that by definition belongs to a class and it
is invoked using only the class, i.e. it does not require an instance of a class. All
classes extending the Object class can define static methods. The most readable
way to call a method of a class is via the $ operator, e.g. Object$load(file) and
Exception$getLastException(), even though FOOP style, e.g. load(Object(),
file) and getLastException(Exception()), is also supported.

3.5 Accessing virtual fields

For Object instances, there is a third way of calling methods. Methods with a name
of format get<Field >(object) or set<Field >(object, value) can be accessed
by what we denote as virtual fields, i.e. as object$<field >. For instance, the
methods getBalance(account) and setBalance(account, newBalance) will be
called whenever account$balance and account$balance <- value are evaluated,

Proceedings of DSC 2003 8

respectively.5 There are at least three real advantages of using virtual fields. First,
it is possible, as the name suggest, to make it look like a class has a certain field,
whereas it internally might use something else. For instance, a Circle class can have
the two redundant fields named radius and diameter where one is a virtual field
and the other is the actual field. Indeed, both might be declared virtual at the same
time. We find that the use of virtual fields reduces the redundancy, which in turn
reduces the risk for inconsistency. It also reduces the memory usage. One can also
image that virtual fields are used to map rows and columns in tab-delimited data
files, spreadsheets, database tables etc. Another advantage is that it is possible
to restrict what values or data types a field can be assigned. For instance, we
can prevent the user from setting a negative radius, e.g. circle$radius <- -20.
Finally, virtual fields can prevent direct access to private fields or modification of
constants. That is, they provide a mechanism for encapsulation (data hiding).

3.6 Accessing class fields

A class field, also known as a static field, is a field associated with the class itself,
not with a particular instance of the class. A class field of a class is shared by all
objects of that class. A common role of a class field is that of a global variable (with
the important difference that it is not a global variable), e.g. Colors$RED.HUE. A
class field is accessed as a regular field except that the object is now the static
class object, e.g. SavingsAccount$count <- SavingsAccount$count + 1. Any
class extending the Object class can have static fields. Static fields can also be
implemented by virtual fields.

4 Coding conventions

An important part of object-oriented design and implementation is to follow a
standard to describe the design and to implement it. There are several standards for
describing object-oriented design of software in COOP style, e.g. Unified Modelling
Language (UML) (Object Management Group, 2002). It is unknown to us if there
is a corresponding one for the FOOP style. For implementation standards, also
referred to as coding conventions, some languages have a well defined specification
to follow whereas others do not. Unfortunately, there is no explicit and official
coding convention for R. A well defined coding convention is useful because it helps
to make the code more structured and more readable and it reduces the risk for
mixing up field names with class names or reassign fields that are supposed to be
constants etc. It is also fundamental for being able to efficiently share source code
between developers and over time. Moreover, it provides a smoother and more
robust way for statisticians that otherwise lack programming experience to quickly
start contributing to existing in-house packages. A well defined coding convention
can also be verified automatically, which decreases the amount of time needed for
peer reviewing the source code. For reasons like these we are working on a R Coding
Convention (RCC) draft (Bengtsson, 2002d). Next we will present an excerpt of its
naming conventions.

5By default, virtual fields have higher priority than regular fields in case both exist. However,
it is (on a reference-to-reference or an object-to-object basis) possible to change the order which
fields, virtual fields, methods and static methods are accessed.

Proceedings of DSC 2003 9

4.1 Naming conventions

Some of the naming convention rules of the RCC apply to object-oriented design and
programming. One of the most important is how classes, fields and methods should
be named. According to the RCC, names representing classes must be nouns and
written in mixed case starting with upper case, e.g. SavingsAccount. Both field
and method names must be in mixed case starting with lower case, e.g. balance and
getBalance(). Private fields should have a . (period) as a prefix, e.g. .balance, to
make it clear that it is a private field. Reserved keywords (R Language Definition,
2003) and unsafe method names must also be avoided according to the RCC. The
methods setConstructorS3() and setMethodS3(), described next, enforce these
naming rules and if not followed, an RccViolationException is thrown. Not all
rules are enforced to be backward compatible with some basic R functions that (for
obvious reasons) do not comply with the RCC. As a last resort, it is always possible
to turn of the test against RCC by using the argument enforceRCC=FALSE when
using the above functions. For all rules and the rationals behind them see Bengtsson
(2002d).

5 Defining new classes

The two utility functions setConstructorS3() and setMethodS3() introduced next
help the programmer to create constructors and methods without having to worry
about generic functions. These functions can be used to define any S3 class, not
only classes derived from Object. Note that there is no setClassS3(), cf. setClass()
in S4. This is because S3, contrary to the richer S4 schema, does not have a formal
class definition. For this reason there is also no (need for an) internal class definition
database. However, this also means that there is no way to enforce that an instance
of a class has the correct format, contains the correct fields, or to assure that the
inheritance structure is valid. One reason for the latter weakness is that the class
of the object and the inheritance structure of the class are solely specified by the
class attribute of the individual objects. This attribute, which is characteristic to
the S3 schema, can be modified in any way at any time making the object-oriented
implementation vulnerable to programming mistakes, but also to misuse. The S4
schema overcomes some of these lack-of-robustness drawbacks. Moreover, because
the Object class relies exclusively on the S3 schema, it implies that neither Object
classes can be defined formally. Moreover, as we have no intention to reinvent the
wheel, we leave it to the developer to “define” classes. However, as we will see,
by means of the suggested class model and especially the extend() method of the
Object class the definition of classes can still be done in a structured way such that
the risk for errors and misuse is minimized.

5.1 Defining constructors

The setConstructorS3() sets the constructor function and automatically creates
any necessary generic function (there are situations where this might be necessary).
When defining a class descending from the Object class, its extend() method plays
the role of defining the new class (its fields and which class to extend). This is prefer-
ably done within a constructor function. For example, to create the SavingsAccount
class we write:

Proceedings of DSC 2003 10

setConstructorS3("SavingsAccount", function(balance=0) {

if (balance < 0)

throw("Trying to create an account with a negative balance: ", balance);

extend(Object(), "SavingsAccount",

.balance = balance

)

})

The declaration of the inheritance is done via the extend() method of the Object
class, which will be called recursively throughout all the superclasses. The first argu-
ment to extend() should be the object returned by the constructor of the superclass.
In the above example, the SavingsAccount inherits directly from the Object class,
which is done by calling its constructor. The second argument to extend() should
be the name of the class to be defined, e.g. SavingsAccount. According to the RCC,
the name of the class should be the same as the name of the constructor function.
Any other arguments to extend() are optional, but they must be named value argu-
ments, e.g. .balance=balance, which then declare the fields of the class and their
default values. Finally, all classes derived from Object must comply with the rule
that it is should be possible to create an instance of it by calling its constructor
with no arguments6, e.g. account <- SavingsAccount(), cf. prototypes in S4.

5.2 Defining methods

The setMethodS3() method creates methods for any S3 class, not just Object classes,
and at the same time encapsulates several details that the programmer should not
have to think about. One such thing is if a generic function should be created or
not and if so, how it should be created. For a detailed discussion on how generic
functions are created automatically if missing see section 5.4. To create the set-
Balance(newBalance) method for the SavingsAccount class, the only thing needed
is7:

setMethodS3("setBalance", "SavingsAccount", function(this, newBalance) {

if (newBalance < 0)

throw("Trying to create an account with a negative balance: ", balance);

this$.balance <- newBalance;

})

The complete usage of setMethodS3() is:

setMethodS3(name, class="default", definition, private=FALSE, protected=FALSE,

static=FALSE, abstract=FALSE, trial=FALSE, deprecated=FALSE,

envir=parent.frame(), createGeneric=TRUE, enforceRCC=TRUE)

where name is the name of the method, class is the name of the class and definition
is the definition, i.e. the function itself. If class == "default" (or "ANY"), a de-
fault function (R Language Definition, 2003) is created. Indeed, we highly recom-
mend to use setMethodsS3() to define regular functions because this will minimize

6The reason for this is that static class objects are created by calling the constructor with no
arguments.

7Note that fields still have to be accessed via the references variable, e.g. this$.balance. This
is in line with the FOOP style, whereas in the COOP style one could imagine direct access, e.g.
.balance. Omegahat’s OOP package supports the latter.

Proceedings of DSC 2003 11

the risk for future naming conflicts with generic functions, which in turn will make
it simpler for other developers. For all other arguments see the help page of the
function.

5.3 Details

The setMethodS3() method creates a standard S3 method and at the same time
makes sure that a generic function for that method is available. For instance, the
evaluation of

setMethodS3("getBalance", "SavingsAccount", function(this) {

this$.balance;

})

will create the S3 method for the class and the S3 generic function, i.e.

getBalance.SavingsAccount <- function(this) {

this$.balance;

}

getBalance <- function(...) UseMethod("getBalance")

It also makes sure that if there already exists a non-generic function with the same
name, it will be renamed to getBalance.default(). If the latter also exists there
is no way setMethodS3() can solve the conflict and therefore an exception will be
thrown explaining this. If a generic function or an internal function that works as
such already exists (determined by source code inspection), a new generic function
is not created. For instance

setMethodS3("as.character", "SavingsAccount", function(this) {

paste(data.class(this), ": balance is ", this$.balance, ".", sep="");

})

will only create the S3 method and not the generic function. In addition to this,
setMethodS3() will by default verify that the (most important) RCC naming rules
are followed. If not, it throws an RccViolationException informing that an RCC
rule was violated. The above applies also to setConstructorS3().

5.4 Safely creating generic functions

When writing a package it is important to make sure that the package does not
overwrite preexisting functions. If a preexisting function exists that is not a generic
function, in most cases, the conflict can be solved by redefining the function to
become a default function. The test whether a function already exists or not is often
done by hand. This is a tedious task for a developer as one has to stay up to date,
not only will new versions of R, but also with all possible packages that the end user
might use simultaneously. This is unrealistic as more and more packages are added
to the CRAN.8 More seriously, other packages might be loaded before or after our
package is loaded and there is no way we can know which functions will be defined or

8The current effort of adding name spaces (R Development Core Team, 2003b) to the R language
will remove some of the problems related to conflicting names of generic functions. A possible
future support for multiple generic function may solve the problem completely.

Proceedings of DSC 2003 12

not. A much safer approach is to check for conflicts and solve them when the package
is loaded. Furthermore, it is important to make sure that the generic function
will work with all packages and not just the methods in our package. Complete
object-oriented programming (COOP style especially) requires that methods can
have the same name for different classes, but with different sets of arguments.
By not specifying the arguments of the generic functions, but only the special ...
argument, e.g. getArea <- function(...) UseMethod("getArea"), we make
sure the generic function is “as generic as possible”9. For a further discussion on
how to create generic functions safely see Bengtsson (2002e). These problems are
all automatically taken care of by setMethodS3() and setConstructorS3().

6 Reference variables

All instances of the Object class or one of its subclasses are accessed via references
variables or shortly references. In standard R where reference variables are not
provided, each instance of a class is accessed by one single variable, the object
itself. With references, however, it is possible for several variables to link to the
same object. Here is an example where a list contains several references to the same
Object:

person <- Person("Dalai Lama", 68)

l <- list(a=person, b=person, c=clone(person))

setAge(l$a, 67)

print(person)

[1] "Dalai Lama is 67 years old."

setAge(l$c, 69)

print(person)

[1] "Dalai Lama is 67 years old."

If person would not be a reference, the two elements a and b would be another
two copies (clones) of the Person object and a modification of one of them would
not have affected the other instance and neither the original variable person. It is
possible to create a copy of an Object by using clone() as the above code shows.

In addition to being more memory efficient, references make it possible to implement
software that otherwise would be tricky or impossible to implement. Using refer-
ences, more details can be encapsulated and thereby the package will be more user
friendly. We believe that a well designed object-oriented method interface based on
references can serve as a base for, but also be a good complement to, a graphical
user interface. For real-world examples see Bengtsson (2002c,a).

9If we do specify any arguments we restrict the corresponding methods for all classes in all
packages loaded at the same time to have the exactly the same set of arguments. Under the S4
style, it is required and enforced that all methods for all classes have exactly the same arguments
as the corresponding generic function. This is one of the reasons why we currently are not using
the S4 style of programming with classes, but we hope to overcome this problem by making use
of name spaces (and a possible future support for multiple generic function). Another option is to
move completely to the COOP style and implement a stand-alone method dispatching mechanism
similar to what is done in Omegahat’s OOP package.

Proceedings of DSC 2003 13

6.1 Garbage collector

The use of references requires memory management, but as we will explain next,
R will automatically take of it. Many languages, including R, provide a built-in
garbage collector, which removes obsolete objects from the memory that are not
referred to by anyone. Since objects inherited from the Object class are standard
R objects they will also be recognized by the garbage collector. For example, an
Object created inside a function and for which no reference is returned, will be
deleted by the R garbage collector. In summary, objects do not have to be deleted
explicitly, but for an Object to be deleted it is important that all references to it
are removed, e.g. by rm(), or set to NULL. It is always a good custom to do this as
soon as an Object is not needed.

6.2 Details

R does not support references, but references can be emulated using so called en-
vironments (R Language Definition, 2003). However, using environments explicitly
will quickly fill the source code with a lot of get(name, envir=ref), assign(name,
value, envir=ref) and/or eval(..., envir=ref) statements. This makes the
code hard to read and increases the risk for errors. By encapsulating all calls to
get() and assign() in the operator methods $(), [[(), $<-() and [[<-() of the root
class Object10, all fields can be accessed like if they were elements in a list. Since
environments are used, garbage collection is automatically taken care of by R’s
memory management system, which minimizes the risk for memory bugs. By using
environments it also possible to save Objects to disk or communicate them via a
connection.

7 Exception handling

In addition to methods for defining classes and support for references, the package
provides an extended exception handling mechanism where an exception can be
thrown and then caught depending on its class. The core functionalities for excep-
tion handling is done by the Exception class (see figure 2). It provides methods to
create and throw exceptions and together with its companion trycatch() complete
exception handling is provided.11

7.1 Creating and throwing exceptions

The easiest way to create and throw an exception is by calling throw(), e.g.

throw("Division by zero.")

which is equivalent to calling

throw(Exception("Division by zero."))

10We have considered extracting the functionalities specific to environments into an Environment
class to make it more explicit that environments are used to emulate references and that the usage
of reference is unrelated to whether the COOP or the FOOP style is used. However, we decided
not to do this (yet) in case R will support true references in the future, which we then silently
would like to incorporate into our class model.

11R developer Luke Tierney presented an almost identical, but built-in, tryCatch() method
during his talk Some New Language Features for R at the DSC 2003 conference.

Proceedings of DSC 2003 14

An object of any class that inherits from Exception contains information about
the error and when it occurred. Any Exception object can be thrown using the
throw() method and then optionally be caught by either trycatch() or try(). If
an Exception is thrown, the last exception thrown can be obtained by the static
method getLastException() of class Exception. The as.character() method for the

Object:
Exception

static getLastException(): Exception
getMessage(): character
getWhen(): POSIX time
getStackTrace(): list
printStackTrace()
showAndWait()
throw()

Figure 2: UML representation of the Exception class, which extends the Object
class. ’Object:’ in the header means that class extends the Object class.

Object class is overridden by the Exception class and the default print message of
an Exception has the format:

> throw("Division by zero.")

Error: [2002-10-20 10:24:07] Exception: Division by zero.

7.2 Catching exceptions depending on class

The trycatch() method can catch exceptions based on what class they belong to.
Like the try() function, the first argument to trycatch() is the expression to be
evaluated, which might throw an exception. Any further arguments must be named
arguments where the name specifies the Exception class to be caught and the value
the code to be evaluated if such an exception is thrown. An argument with name
ANY will catch any kind of Exception (including try-error thrown by stop()). If
an exception is caught and no further exceptions are thrown, then trycatch() will
return safely. The following code will generate and throw an exception, which will
be caught by the ANY clause, preventing the R session from being interrupted.

trycatch({

x <- log(2);

y <- log("a");

}, ANY={

x <- 0;

y <- 0;

print(Exception$getLastException());

})

print("trycatch() did indeed catch the exception.");

Moreover, code defined by an argument named finally is guaranteed to be evalu-
ated immediately before trycatch() returns. This is for instance useful if a connec-
tion needs to be closed regardless of whether an exception is thrown or not.

Proceedings of DSC 2003 15

8 Utility functions

In addition to the aforementioned methods, the package defines some useful utility
functions, which are applicable to objects of any class or data type. The default
method of ll() lists detailed information about the objects (variables and functions)
found in an environment. The returned data frame will by default contain infor-
mation about the member (name of the variable or function), data.class, dimension
and object.size, which are the values returned by the functions with the same name.
For example

> ll()

member data.class dimension object.size

1 analyze function NULL 248

2 ma MAData 1 452

3 raw RawData 1 452

4 gpr GenePixData 1 460

5 y numeric 100 828

For other utility functions available see the help of the package.

9 Other classes

Other classes that are loaded with this package are Class, Package and Rdoc. The
class Class provides an interface for querying classes about methods, fields etc. The
class Package represents any kind of package, e.g. Package("base"). Given a
Package object it is possible to query it for its classes, its author, check for updates
(see section 11 for an example) etc. The Rdoc class provides a compiler for Rdoc
documentation, which is an extension of the Rd language that minimizes the need
for having to update the documentation when the source code is updated. For
instance, the tag @synopsis generates a correct \usage (or \synopsis) markup
given the other information in the Rdoc code, but also given the source code. The
Rdoc documentation can be standalone files similar to Rd files (the simplest Rdoc
file is a plain Rd file) or it can be part of the source files in form of comments. The
Rdoc code is compiled into standard Rd files, which are then converted into help
pages etc. by R CMD build. As the Rdoc compiler is run within R with the package
to be documented loaded, it is possible to generate parts of the documentation at
compilation time. The reason for not generating a Rd skeleton, which is then to
be filled in manually, is that at each update the skeleton has to be regenerated
and the help text has to be reentered. This is not necessary if Rdoc comments are
used. Currently the Rdoc compiler supports S3 and Object classes in COOP style
(methods are listed at the same place as the class description), but we intend to
extend it to recognize S4 and also generic functions in FOOP style (methods are
listed at the same place as the generic function).

10 Limitations

First, using environments to emulate references limits the granularity of references
to fields, e.g. it is not possible to reference a single element in a matrix etc. Hence, it
could be argued that the term semi-references is more appropriate. Second, as the
access to the fields of an Object is done indirectly via the evaluation of $() etc., there

Proceedings of DSC 2003 16

is a noticeable (and unavoidable) overhead, which affects the overall performance.
This effect can be significant if the same field is accessed a large number of times
within a loop, say. In such cases, we recommend to work with a local copy of the
field. Note that the amount of memory required is still much less that working on a
local copy of the whole object. Third, multiple inheritance is (yet) not supported by
the class model, but interfaces are. For more details see the package help. Finally,
there is an (unspoken) intention in the R community to migrate to S4 and since the
class model described above is relying on S3 this is a weakness.

11 Installation

Since the package was written in “100% R”, no native code needs to be compiled
and the installation is straightforward. The R.oo package is part of a bundle of
packages called R.classes (Bengtsson, 2003). To download and install the R.classes
bundle do

install.packages("R.classes", contriburl="http://www.maths.lth.se/help/R")

from within R. By default, the package is installed in the directory library/ in the
directory where R is installed. The bundle can be installed in a private directory by
setting the environment variable R LIBS. See help(.Renviron) for details. To in-
stall the bundle manually or on a Macintosh that does not have OS X see Bengtsson
(2003). For future updates, load the package and do update(R.oo).

12 Conclusions

The R.oo package is open source, it is designed in an object-oriented style and im-
plemented using plain and richly commented R code (“100% R”). Moreover, it is
designed and implemented such that any future migration from S3 to S4, but also
such that the incorporation of a future language support for true references will be
as smooth as possible for the end user. This should also be true if another solution,
for instance Omegahat’s OOP package, becomes the de facto standard for references
in R.

For over two years we have used the R.oo package and the R.classes bundle in a
project developing a cDNA microarray analysis package (com.braju.sma; Bengtsson,
2002a). We have found that by using the R.oo package we have never had problems
with conflicts related to generic functions and we never have had to create a generic
function explicitly. In situations when we by mistake tried to use a reserved word
for a method name, setMethodS3() immediately notified us. We have also found the
Rdoc compiler to be a valuable tool for maintaining its nearly 200 Rd files for over
50 classes and 800 methods. Due to the huge memory load and the large amount
of redundancy in microarray data, the use of reference variables has been a natural
and successful choice. Moreover, since methods can change the state of objects
when references are used, we have been able to decrease the number of arguments
that has to be specified in the method calls and therefore we can provide a cleaner
and more user-friendly method interface. For the same reason we have been able to
speed up subsequent analysis steps by caching intermediate calculations internally.
For further discussion on how the R.oo package has been used in the development

Proceedings of DSC 2003 17

of our microarray package see Bengtsson (2002b). To install the com.braju.sma
package see Bengtsson (2002a).

References

Henrik Bengtsson. com.braju.sma - object-oriented microarray analysis in 100% R,
2002a. URL http://www.maths.lth.se/help/R/.

Henrik Bengtsson. The com.braju.sma package - a microarray analysis package
based on an object-oriented design and reference variables, 2002b. URL http:
//www.maths.lth.se/help/R/.

Henrik Bengtsson. Programming with references - a case study using the R.oo
package, 2002c. URL http://www.maths.lth.se/help/R/.

Henrik Bengtsson. R Coding Conventions (draft), 2002d. URL http://www.maths.
lth.se/help/R/.

Henrik Bengtsson. Safely creating S3 generic functions using setGenericS3(), 2002e.
URL http://www.maths.lth.se/help/R/.

Henrik Bengtsson. The R.classes bundle (R.oo and friends), 2003. URL http:
//www.maths.lth.se/help/R/.

John M. Chambers. Programming with Data. Springer, 1998.

John M. Chambers. The definition of generic functions and methods, January 2002a.
URL http://developer.r-project.org/methodDefinition.html.

John M. Chambers. S language methods and classes, 2002b.

John M. Chambers and Duncan Temple Lang. Object-oriented programming in R.
R News, 1(3):17–19, September 2001. URL http://CRAN.R-project.org/doc/
Rnews/.

John M. Chambers and Duncan Temple Lang. OOP programming in the S language,
2002. URL http://www.omegahat.org/OOP/.

Robert Gentleman and Ross Ihaka. Lexical scope and statistical computing. Journal
of Computational and Graphical Statistics, 9:491–508, 2000.

Object Management Group. UML Resource Page, 2002. URL http://www.omg.
org/uml/.

Andrew Shalit, David Moon, and Orca Starbuck. The Dylan Reference Manual:
The Definitive Guide to the New Object-Oriented Dynamic Language. Addison-
Wesley Publishing Company, 1996. ISBN 0-201-44211-6.

R Development Core Team. R Language Definition (v1.7.0, draft), April 2003a.

R Development Core Team. Writing R Extensions (v1.7.0), April 2003b.

W.N. Venables and B.D. Ripley. Modern Applied Statistics with S-PLUS. Springer,
3rd edition, 1999. ISBN 0-387-98825-4.

http://www.maths.lth.se/help/R/
http://www.maths.lth.se/help/R/
http://www.maths.lth.se/help/R/
http://www.maths.lth.se/help/R/
http://www.maths.lth.se/help/R/
http://www.maths.lth.se/help/R/
http://www.maths.lth.se/help/R/
http://www.maths.lth.se/help/R/
http://www.maths.lth.se/help/R/
http://developer.r-project.org/methodDefinition.html
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.omegahat.org/OOP/
http://www.omg.org/uml/
http://www.omg.org/uml/

Proceedings of DSC 2003 18

Affiliation

Henrik Bengtsson
Mathematical Statistics
Centre for Mathematical Sciences
Lund University, Box 118
SE-221 00 Lund, Sweden
E-mail: hb@maths.lth.se

mailto:hb@maths.lth.se

	Introduction
	The root class Object
	Using classes inheriting from the Object class
	Creating an object
	Accessing fields
	Calling methods coupled with a class
	Calling static methods
	Accessing virtual fields
	Accessing class fields

	Coding conventions
	Naming conventions

	Defining new classes
	Defining constructors
	Defining methods
	Details
	Safely creating generic functions

	Reference variables
	Garbage collector
	Details

	Exception handling
	Creating and throwing exceptions
	Catching exceptions depending on class

	Utility functions
	Other classes
	Limitations
	Installation
	Conclusions

