
Proceedings of the 3rd International Workshop

on Distributed Statistical Computing (DSC 2003)
March 20–22, Vienna, Austria ISSN 1609-395X

Kurt Hornik, Friedrich Leisch & Achim Zeileis (eds.)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

High-Level Interface Between R and Excel

Thomas Baier Erich Neuwirth

Abstract

Spreadsheet programs in general and Microsoft Excel in particular imple-
ment a very special paradigm of computing: automatic creation of depen-
dency structures for calculation, and automatic recalculation when input val-
ues change. This is rather different from the usual model of batch processing
underlying most statistics software, e.g. R.

Since some time now, a COM server implementation for R has been avail-
able. As a more recent development, R can also act as COM client, using
Excel as a server. So we can either think of R as an extension of Excel, or of
Excel as a utility program (and data editor) for R.

We will discuss the differences between these 2 approaches, and their rela-
tive merits under different circumstances. This will be done by showing exam-
ples of applications implementing these rather different models for statistical
computation.

Emphasis will be more on the philosophy and style of statistical analysis
than on technical implementation details.

1 Introduction

R (Ihaka and Gentleman, 1996) and Microsoft r© Excel (Microsoft Corporation (1999))
have a very different user interface concept. For R most interaction happens through
the high-level R language, whereas Excel mostly works with a direct manipulation
interface. In R one works with data objects (data frames, matrices, single values) by
naming them and referring to them by names in the program. The spreadsheet in-
terface (as implemented in Excel, but also in many other spreadsheet programs like
Gnumeric (GNOME Foundation, 2003) or OpenCalc (OpenCalc Technical Team,
2003) allows to refer to data objects by gesturing, or pointing at them. Quite often,
this is understood as a GUI (graphical user interface) concept, which, however, is

New URL: http://www.R-project.org/conferences/DSC-2003/

http://www.R-project.org/conferences/DSC-2003/

Proceedings of DSC 2003 2

not correct. The gesturing spreadsheet interface predates graphical user interfaces.
Visicalc (Bricklin, 1979), the very first spreadsheet program, was a character mode
application and already implemented this approach.

Combining R and Excel brings together these two very different user interface
worlds, and therefore, apart from technical implementation issues, one also has to
be very careful when combining radically different user interaction concepts. More
information indicating how the spreadsheet interface is very useful for statistics
can be found in Neuwirth (2000), and more generally in science and engineering
applications can be found in Filby (1997), especially Neuwirth (1997).

We implemented 2 different philosophies. In the first approach, R is embedded
as an extension of Excel. The user stays within the spreadsheet interaction model
and gets additional functionality provided by R. One might say this is a statistically
enriched version of Excel. This will be discussed in section 2.

In the second approach, Excel functionality is made accessible from within R.
The user enters R code and some of the R commands start Excel and allow to enter
or edit data in Excel. Alternatively, results of statistical computations in R are
written into spreadsheet ranges. One might say that Excel becomes accessible as a
scratch-pad for R data and R output. This approach is discussed in section 3.

2 Excel as the host

Extending the functionality of Excel usually is done in two different ways. One can
either add new menus and menu items offering operations on data in the spread-
sheets, or one can define new functions which can be used in cell formulas.

The important difference is that menu operations produce static output, whereas
in-cell functions will update automatically when the input cells for a formula change.
For every spreadsheet, Excel internally builds the dependency tree and whenever a
cell is changed, all cells depending on this cell will automatically be recalculated.
Here is an example of the simplest form of using R functions in Excel (through the
RExcel add-in):

RApply("pchisq",30,1)

This formula computes the probability function of the chi-squared distribution
for the given values.

In terms of Excel, R (or more specific: R’s services) is a first-class object in
Excel. This also allows the arguments in a call to RApply to be references to cells.
Using this mechanism one can calculate the power of a statistical test in an Excel
sheet. Excel has some statistical distribution functions including the chi-squared
distribution in the Data Analysis Toolkit, but only the central version. Since R
has the non-central distribution function the advantage of getting R to work within
Excel is immediate: one can calculate the power of chi-squared tests in Excel.

The example supplied with our RExcel add-in calculates the power function of
a chi-squared test for a Roulette wheel with unequal probabilities when testing for
equal probabilities.

Proceedings of DSC 2003 3

Excel gives a very convenient interactive way of doing what-if analyses, for
example by changing parameters of a statistical model.

RApply turns any R function into an Excel function. Sometimes we might want
to hide the R functions completely from the user. We can do this by putting a
VBA (V isual Basic for Applications) wrapper around the call to R. VBA is an
abbreviation for the macro language used in Excel (and in general in all Microsoft
Office applications). See Microsoft Corporation (2002) for more information.

In our case, we can define

Function ncchidist(x, deg_free, noncent)
ncchidist=RApply("pchisq",x, deg_free, noncent)

End Function

Function ncchiinv(prob, deg_free, noncent)
ncchiinv=RApply("qchisq", prob, deg_free, noncent)

End Function

These two functions can then be used like any other Excel function, and using
this mechanism we can make any set of R functions (including ones defined in user
code) transparently accessible in Excel.

The software connection between R and Excel is implemented by making R a
COM server. The COM server has been described in Baier and Neuwirth (2001).

There are two different implementations of R as a COM server available. One
of them provides R’s functionality as an invisible service application (comparable
to e.g. a database), whereas the other implementation allows user interaction with
R’s GUI interface at the same time as R’s computational engine is used by Excel.
More details on this will be discussed later.

Proceedings of DSC 2003 4

The complete interface for using R in spreadsheet functions called directly in
spreadsheet cells in Excel is implemented with the following functions:

Name Description
RApply apply an R function to the given arguments
REval evaluate an R expression given as a string
RVarSet assign an R expression given as a string to an R vari-

able
RPut assign a value from an Excel range to an R variable
RStrPut assign a value from an Excel range to an R variable

as a string
RProc execute some R commands

RApply and REval evaluate R function calls and put the result in a cell. The dif-
ference is that RApply expects the function as the first argument and the arguments
for the function as the remaining arguments whereas REval needs a string which is
a complete R function call including the arguments as its argument. Typical uses
are RApply("sin",1) and REval("sin(1)"). In both cases, all the arguments can
be references to other spreadsheet cells.

Since RApply performs a function call with a function as the first argument to
RApply and the arguments to this function as the remaining arguments, and since
R is a fully functional language with functions as first class objects, one also can
make function calls like RApply("function(x)x*x",2) and again, the arguments
for RApply can be cell references to other spreadsheet cells. This is how one can
define an R function on the spot within a spreadsheet, and this can even be an
anonymous function.

For functions with more code, however, being able to define named function is
quite useful. RProc takes a columnar spreadsheet range and executes the text in
the range as R code. Writing a function definition in the usual way

myfun <- function(x){
x*x

}

and calling RProc with this range as argument will define function myfun in R.
Then, RApply can use myfun as its fist argument.

RVarSet has two arguments, a variable name and a string expression. The string
expression must be a valid R expression and the value of this expression is assigned
to the variable. The string expression can be constructed by combining contents of
spreadsheet cells with Excel’s string functions. RVarSet(A1,B1&"*"&B2) would use
R to multiply the contents of cells B1 and B2 in a spreadsheet and assign the result
to the variable whose name is given in cell A1. Note that in this example VBA’s
string concatenation operator & is used to build the string argument.

RPut and RStrPut assign a value from an Excel range to an R variable. RPut
will assign a numeric value if all the cells referenced in the second argument contain
numeric values, RStrPut will enforce that the assigned values in R are string values.

Proceedings of DSC 2003 5

If the range consists of only one cell the assigned object it will be a scalar. Otherwise
the object will either be a numeric or a string matrix.

Allowing named functions defined in a spreadsheet cell to be used in the calcula-
tions in other cells introduces new problems: dependencies and recalculation order.
For every spreadsheet, Excel has a dependency table so when any cell is changed,
it recalculates all the cells depending on this cell. If in some cell in our spreadsheet
we use a function defined using RProc in another cell, Excel does not know that the
function definition has to be evaluated before the function is evaluated.

To solve this problem we introduce what we might call artificial dependencies.
REval, RProc, RVarSet, RPut, and RStrPut all have a fixed number of arguments
for normal use. They will take additional arguments. These arguments will be
evaluated within Excel before the operation itself is performed. If the first argument
of REval is a function call for an R function defined in some other cell(s) of the
spreadsheet (possibly using RProc), a second argument to REval referencing the
cell where the definition is executed (this is the cell with the spreadsheet formula
containing RProc, not the cell(s) with the code defining the function), will enforce
that the definition is performed before the function is evaluated. This is especially
important when the function definition is changed. In that case, without indicating
the dependency, the evaluation call might use an obsolete definition of a function.
Things are a little bit more complicated for RApply. RApply takes a variable number
of arguments. Therefore, we need an indicator to separate real arguments (the ones
used in the R function call) from arguments used only to indicate dependencies. If
an argument to RApply is the string "depends", then no arguments to RApply will
be used in the R function call created by RApply.

Currently, our implementation runs reasonably well for the R (D)COM server
described in Baier and Neuwirth (2001). This way, R is embedded invisibly into
a spreadsheet application. There is no GUI or command line interface to the R
instance doing the computational work for Excel. The R instance can only be
accessed from within Excel.

A second implementation makes it possible to access an instance of R in a
way that Excel and a command line or GUI version of R share name, data, and
code space. Access to the R command line is provided at the same time as to the
spreadsheet interface. This allows to use the strengths of both office applications
and R side by side on the Windows platform. See Baier (2003) for details of this
implementations.

Instead of using spreadsheet functions as the main interface between R and
Excel we can also use VBA (the programming language embedded in Excel). This
interface (it is the first one in our project of combining R and Excel) is described
in Baier and Neuwirth (2001), and consists of 5 VBA procedures:

Name Description
RInterface.StartRServer starts a new R server instance
RInterface.StopRServer stops the current R server instance
RInterface.RRun executes a line of R code
RInterface.PutArray transfers an array from Excel to R
RInterface.GetArray transfers an array from R to Excel

Proceedings of DSC 2003 6

Using these VBA procedures it is possible to write VBA programs with full access
to R. There is a very important difference between embedding R into Excel with
spreadsheet functions and with VBA procedures: when the function interface is used
the execution of R functions becomes part of Excel’s automatic recalculation. When
the VBA-procedural interface is used, only the VBA programs (possibly triggered
by menu items and buttons) start the execution of R code. In the standard case
this means that R code is only executed when the user presses a button or selects
a menu item.

Here is a short example

Sub Demo()
Call RInterface.StartRServer
Call RInterface.RRun("z <- rnorm(60)")
Call RInterface.RRun("dim(z) <- c(10,6)")
Call RInterface.GetArray("z", Range("Sheet1!A19"))
Call RInterface.StopRServer

End Sub

This procedure creates a vector of 60 random numbers, transforms the vector into
a 10x6 matrix and then transfers the matrix to an Excel range. It can be attached
to a button or menu item, and then the user can trigger this operation, effectively
creating a matrix of random numbers produced by R in Excel.

3 R as the host

The other way of embedding is using R as the COM client and, say, Excel as the
COM server. In this case, “R is in control”, meaning that the user mainly interacts
with the R command line. A relatively straightforward use would be calling Excel
from R to obtain data already available as an Excel spreadsheet, then doing complex
statistical analyses, and finally putting some reports (possibly including graphics)
back into Excel. In theory, this can also be done using our previously described case
where R acts as COM server. The main difference is that in the first framework the
user works with Excel enhanced by R, and in the second case works with R with
the additional possibility of accessing Excel from within R.

Excel, in this case, just is a representative for any application exposing its
functionality as a COM server. In particular, this applies to all applications in
Microsoft’s Office family of products. In our discussion, R is responsible for the
computational functionality, while the Office suite is used for user input and out-
put/presentation.

Using R’s COM client package rcom, one can access any COM server’s functions
as long as they are provided in a form conforming to OLE automation. In addition
to this low-level mechanism, we are providing the R package ROffice.Excel. The
purpose of this package is to allow easy interaction between R and Microsoft Excel.
It will simplify the most common applications by providing high-level functionality
especially designed as an interface to Excel, while still providing full access to all
functionality.

Proceedings of DSC 2003 7

We may enhance R’s programmable GUI available under Windows by adding
additional menu items. These can be used for easy integration of foreign function-
ality into R’s more text-based interface. As an example, basic integration of part of
the Microsoft Office suite is shown.

Excel functionality can be implemented in R rather smoothly by adding menu
functions for transferring data. For this reason, only the integration of Microsoft
Excel is discussed in more detail for this part by utilizing the ROffice.Excel high
level access package.

3.1 Accessing Excel, PowerPoint and Word

Even when using R as the primary workbench for data analysis, in the Windows
world presentations of output are expected to be done using Microsoft’s Office suite
of programs. At the same time, many times input data for computations is available
in e.g. Microsoft Excel file format.

Sometimes it can be convenient to drive PowerPoint or Word from the R com-
mand line or get data from an Excel spreadsheet. As all Office applications expose
their functionality as an object model via COM, the rcom package can be used for
access. The following code shows some R functions to start up and show PowerPoint
and Word:

.ppointHandle <- local({
.pp.loc <- character(0)
function(new) {
if(!missing(new)) {
.pp.loc <<- NULL

} else {
.pp.loc

}
}

})
ppointCreate <- function(storeglobal = TRUE) {
pp <- comCreateObject("PowerPoint.Application")
if(storeglobal) {
.ppointHandle(pp)

}
return(pp)

}
ppointGet <- function(createonerror=TRUE,

storeglobal=TRUE,useexisting=TRUE) {
if(useexisting && !identical(.ppointHandle(),NULL)) {

return(.ppointHandle())
}
pp <- comGetObject("PowerPoint.Application")
if(createonerror && identical(pp,NULL)) {

pp <- ppointCreate(storeglobal = FALSE)

Proceedings of DSC 2003 8

}
if(storeglobal) {
.ppointHandle(pp)

}
return(pp)

}
ppointShow <- function(visible=TRUE,pp=ppointGet()) {
comSetProperty(pp,"Visible",visible)

}
.wordHandle <- local({
.word.loc <- character(0)
function(new) {
if(!missing(new)) {
.word.loc <<- NULL

} else {
.word.loc

}
}

})
wordCreate <- function(storeglobal = TRUE) {
w <- comCreateObject("Word.Application")
if(storeglobal) {
.wordHandle(w)

}
return(w)

}
wordGet <- function(createonerror=TRUE,

storeglobal=TRUE,useexisting=TRUE) {
if(useexisting && !identical(.wordHandle(),NULL)) {
return(.wordHandle())

}
w <- comGetObject("Word.Application")
if(createonerror && identical(w,NULL)) {
w <- ppointCreate(storeglobal = FALSE)

}
if(storeglobal) {
.wordHandle(w)

}
return(pp)

}
wordShow <- function(visible=TRUE,w=wordGet()) {
comSetProperty(w,"Visible",visible)

}

To provide some basic integration into R’s user interface one can use the functions
winMenuAdd() and winMenuAddItem() to add new menu items to R’s GUI.

Proceedings of DSC 2003 9

Adding a new pull-down menu Office with menu items for starting Excel, Pow-
erPoint and Word is achieved by the following code:

winMenuAdd("Office")
winMenuAddItem("Office","Start Excel","excelShow()")
winMenuAddItem("Office","Start PowerPoint","ppointShow()")
winMenuAddItem("Office","Start Word","wordShow()")

As well as starting these applications and manipulating properties it is easy as
well to call functionality and transfer data between R and Office.

3.2 Controlling Excel: ROffice.Excel

The object model of many applications is very complex and requires the user to
extensively study help files and manuals. For many cases, only a small subset of all
functionality is required.

The 90:10 rule also applies to the requirements of users and their applications:
90% of your needs are covered by only 10% of the functionality.

For our previous work we have been focusing on Microsoft Excel as a very useful
medium for data entry and output. Therefore, we decided to provide an easy-to-use
interface to a small subset of functions in Excel which can easily be integrated into
the R GUI and R programs.

What we have been focusing on is providing access to

• getting access to Excel itself (either a current instance or starting a new
window)

• exchanging Excel’s current selection with R (reading the selection into an R
variable or writing a variable to the current selection)

• exchange any rectangular area in the spreadsheet with R

In the case of data transfer, the functions are trimmed to either return a value
(e.g. a data vector or matrix) or to provide access to the Excel COM object itself.

The following functions have been implemented:

Name Description
excelGet, excelCreate return the current instance of Microsoft

Excel or create a new instance
excelShow show the Excel window
excelGetSelectionValue get selection value
excelSetSelectionValue set selection value
excelGetSelection get selection object
excelGetCellValue get cell value
excelSetCellValue set cell value
excelGetCell get cell object
excelGetRangeValue get range value
excelSetRangeValue set range value
excelGetRange get range object

Proceedings of DSC 2003 10

Using these functions, you can easily transfer data between R and Excel. The
following example shows how to store the specified cell range into R’s variable rng1.

get range "A1" to "D7" and store the matrix into rng1
rng1 <- excelGetRangeValue("A1:D7")

add 5 to every element and store back
excelSetRangeValue("A1:D7",rng1+5)

In the above example, the currently active instance of Excel is used automati-
cally. If none is running, Excel is started and the new Excel object is returned (see
documentation for excelGet() and excelGetRangeValue() for more information).

Using the COM client package R can control the Microsoft’s Office suite of ap-
plications. For easy access to Excel’s basic input and output facilities the additional
package ROffice.Excel can be used. For the not so common operations, one hsa to
rely on rcom and directly access the COM interfaces provided by Excel. The COM
level is also the interface currently supported for the other applications of the Office
suite.

As ROffice.Excel builds on the low-level functionality provided by rcom and
is completely written in R itself, one can easily extend the package or seamlessly
integrate similar functionality for other applications.

In the next section, we will provide an example giving a better idea of the wide
range of applications of R’s office integration.

3.3 Excel → R → PowerPoint

Office integration not only means that R can get data from Microsoft Excel or
pop up another application. In fact, R can completely control any of the Office
applications—at least as far as Office allows this.

In a very simple example we will show how to use Excel as a medium for user
input and PowerPoint to show the results of the computations done in R.

The simple application will use the χ2 goodness-of-fit test to compute the prob-
ability of finding out whether a given roulette table has been manipulated. We
will use R to do the computations and show the correlation between the number of
observations and the probability of discovery in a PowerPoint slide.

Here, R will read the selection from Excel. For the example the selection is a
matrix with two columns and 37 rows, the first column representing probabilities
of the numbers 0 to 36 for a fair roulette table. The second column represents the
probabilities for the manipulated roulette.

We will use some simple functions for the computations. The helper functions
are designed to handle different cases e.g. various numbers of numbers with equal
probabilities and manipulated numbers.

noncent <- function(n,equal,manipulated)
{
return(n * sum(((manipulated - equal) ** 2) / equal))

}

Proceedings of DSC 2003 11

power <- function(n,equal,manipulated,dof,alpha)
{
nc <- noncent(n,equal,manipulated)
crit <- qchisq(alpha,dof,0)
return(1 - pchisq(crit,dof,nc))

}
doTest <- function(alpha,report)
{
selection <- excelGetSelectionValue()
observations <- c(100,200,500,1000,2000,5000,10000,

20000,50000,100000,200000,500000,1000000)
probabilities <- power(observations,selection[,1],selection[,2],

36,alpha)
eval(call(report,observations,probabilities))

}

The front-end for the application code is doTest. This function takes the α
value and a reporting function as its arguments. As a reporting function, one can
e.g., use the plot() function. Now the functionality is added to R’s main menu in
the R GUI for different α values:

winMenuAdd("Chi-Squared Test")
winMenuAddItem("Chi-Squared Test","alpha = 0.75",

"doTest(0.75,\"plot\")")
winMenuAddItem("Chi-Squared Test","alpha = 0.80",

"doTest(0.80,\"plot\")")
winMenuAddItem("Chi-Squared Test","alpha = 0.85",

"doTest(0.85,\"plot\")")
winMenuAddItem("Chi-Squared Test","alpha = 0.90",

"doTest(0.90,\"plot\")")
winMenuAddItem("Chi-Squared Test","alpha = 0.95",

"doTest(0.95,\"plot\")")
winMenuAddItem("Chi-Squared Test","alpha = 0.97",

"doTest(0.97,\"plot\")")

doTest() is passed a reporting function presenting the results. In addition to
the simple plot() function used before, one can also use some more sophisticated
output device. The following example will use Microsoft PowerPoint as an output
device. A report function compatible with the above argument list is shown below:

ppointReport <- function(n,probs)
{
start PowerPoint and create an presentation with a single slide
ppt <- comCreateObject("PowerPoint.Application")
pres <- comInvoke(comGetProperty(ppt,"Presentations"),"Add")
slides <- comGetProperty(pres,"Slides")
type 12 is empty slide, 8 is chart, 2 is title+enumeration

Proceedings of DSC 2003 12

slide <- comInvoke(slides,"Add",2,1)

set the title of the slide
title <- comGetProperty(comGetProperty(slide,"Shapes"),"Title")
rng <- comGetProperty(comGetProperty(title,"TextFrame"),

"TextRange")
comSetProperty(rng,"Text","Roulette: Chi Squared-Test")

add analysis results to slide
enumshape <- comInvoke(comGetProperty(slide,"Shapes"),"Item",2)
rng <- comGetProperty(comGetProperty(enumshape,"TextFrame"),

"TextRange")
txt <- paste(n,rep("observations\tp =",length(probs)),probs,

collapse="\r")
comSetProperty(rng,"Text",txt)
comSetProperty(comGetProperty(rng,"Font"),"Size",16)

show the results
comSetProperty(ppt,"Visible",TRUE)
comInvoke(comGetProperty(pres,"SlideShowSettings"),"Run")

}

And of course, this reporting function has to be specified when creating the
menu items, e.g.

...
winMenuAddItem("Chi-Squared Test","alpha = 0.75",

"doTest(0.75,\"ppointReport\")")
...

This provides a very simple data reporting facility. The user chooses a menu
item in the R application window, R gets the data from Excel, computes the results
and puts the report into PowerPoint. After the results have been shown, you can
simply save the resulting presentation to disk for later use.

4 Conclusion and outlook

In addition to embedding an invisible R into a spreadsheet application, it is also
possible to run R in parallel to the spreadsheet, providing access to the R command
line at the same time as to the spreadsheet interface. This allows to use the strengths
of both office applications and R side by side on the Windows platform.

Currently packages for accessing office applications are still in development.
ROffice.Excel is available as a first implementation from the R COM home page
http://sunsite.univie.ac.at/rcom. There is also a mailing list available for
discussions on the current and future implementations.

http://sunsite.univie.ac.at/rcom

Proceedings of DSC 2003 13

References

Thomas Baier. R: Windows component services. integrating R and Excel on the
COM layer. In Kurt Hornik and Friedrich Leisch, editors, DSC 2003 Pro-
ceedings of the 3rd International Workshop on Distributed Statistical Comput-
ing, 2003. URL http://www.ci.tuwien.ac.at/Conferences/DSC-2003/. ISSN:
1609-395X.

Thomas Baier and Erich Neuwirth. Embedding R in standard software, and the
other way round. In Kurt Hornik and Friedrich Leisch, editors, DSC 2001 Pro-
ceedings of the 2nd International Workshop on Distributed Statistical Comput-
ing, 2001. URL http://www.ci.tuwien.ac.at/Conferences/DSC-2001/. ISSN:
1609-395X.

Dan Bricklin. Visicalc material, 1979. URL http://www.bricklin.com/visicalc.
htm.

Gordon Filby, editor. Spreadsheets in Science and Engineering. Springer Verlag,
1997. ISBN: 3-540-61253-X.

GNOME Foundation. Gnumeric documentation, 2003. URL http://www.gnome.
org/projects/gnumeric.

Ross Ihaka and Robert Gentleman. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

Microsoft Corporation. Microsoft Excel. Microsoft Corporation, 1999.

Microsoft Corporation. Online resources. In Microsoft Visual Basic for Appli-
cations. Microsoft Corporation, 2002. URL http://msdn.microsoft.com/vba/
technical/online.asp.

Erich Neuwirth. Spreadsheets as tools in mathematical modeling and numerical
mathematics. In Gordon Filby, editor, Spreadsheets in Science and Engineering,
pages 87–114. Springer Verlag, 1997. ISBN: 3-540-61253-X.

Erich Neuwirth. Spreadsheets as tools for statistical computing and statistics educa-
tion. In Jelke G. Bethlehem and Peter G. M. Van Der Heijden, editors, Compstat,
Proceedings in Computational Statistics, 2000.

OpenCalc Technical Team. OpenCalc documentation, 2003. URL http://sc.
openoffice.org.

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/
http://www.bricklin.com/visicalc.htm
http://www.bricklin.com/visicalc.htm
http://www.gnome.org/projects/gnumeric
http://www.gnome.org/projects/gnumeric
http://msdn.microsoft.com/vba/technical/online.asp
http://msdn.microsoft.com/vba/technical/online.asp
http://sc.openoffice.org
http://sc.openoffice.org

Proceedings of DSC 2003 14

Affiliation

Thomas Baier
Department of Statistics
Vienna University of Technology
E-mail: baier@ci.tuwien.ac.at

Erich Neuwirth
Department of Statistics and Decision Support Systems
University of Vienna
E-mail: erich.neuwirth@univie.ac.at

mailto:baier@ci.tuwien.ac.at
mailto:erich.neuwirth@univie.ac.at

	Introduction
	Excel as the host
	R as the host
	Accessing Excel, PowerPoint and Word
	Controlling Excel: ROffice.Excel
	Excel R PowerPoint

	Conclusion and outlook

