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Abstract. Bioconductor (www.bioconductor.org) is an open source
collection of resources aimed at transparently advancing the theory and
practice of bioinformatics, with a focus on expression arrays and the R
statistical computing environment. I will sketch the key data structures
and data flow processes addressed in Bioconductor thus far. I will re-
view the role played by RDBMS in the development and curation of
packaged annotation networks and in the analysis of Serial Analysis of
Gene Expression (SAGE) libraries. Non-relational database technolo-
gies such as BerkeleyDB and HDF5 have also played a role in tools for
archiving and navigating expression array data. At present the role of
RDBMS in Bioconductor is less pronounced than had been anticipated.
This will change as requirements for query optimization, data structure
standardization, and greater volumes of data and metadata emerge.

1 Introduction

The recent explosion in volume of biological data and metadata impacts scientific
computing in many ways. Figure 1 is a common depiction of the problem, schema-
tizing the exponential growth of quantitative data on sequence, diversity, signal-
ing and expression. Not shown are metadata resources required to allow accurate
and efficient use of the burgeoning experimental and observational data. These are
schematized in Figure 2, and empirical growth of data in these databases is sketched
in Figure 3.

www.bioconductor.org
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Figure 1: Data explosion. c©2002 EBI.
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Figure 2: Data/metadata network. c©2002 GenomeNet Japan.
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Figure 3: Residue load in major bioinformatics databases. c©2002 GenomeNet
Japan.
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Bioconductor (www.bioconductor.org) is an open source collection of resources
aimed at transparently advancing the theory and practice of bioinformatics, with
a focus on expression arrays and the R statistical computing environment. The
primary objective of Bioconductor is to provide a basis for getting the best statistical
and computational methods of bioinformatics into the hands of practicing biologists.
This has necessitated considerable work on the infrastructure of R, and the success
of this has allowed us to limit the role of RDBMS technology in Bioconductor to
date. In this report I will sketch various aspects of bioinformatic data structure and
data flow processes supported by Bioconductor. Issues in the creation and curation
of packaged metadata and annotation networks will be reviewed in some detail, and
the explicit role of Postgres in new tools for the analysis of SAGE libraries will be
described. Longer term involvements with DBMS technologies related to volume,
standards, and query optimization are discussed in the conclusion.

2 Data structures and flow related to microarrays

2.1 Genomic metadata

Microarrays are rectangular layouts of DNA sequences. I will focus on the AffymetrixTM
Hu6800 or U95Av2 chips to describe annotation issues arising in Bioconductor. The
location of sequence on the chip is recorded in .sif or probe tab files supplied by
the manufacturer.

Probe Set Name

Serial Order

Probe X Probe Y Probe Interrogation Position

Probe Sequence

A28102_at 1 5 1 1084 TACCTAAAGTGGCATATGCGACGGC

A28102_at 2 6 1 1174 TCAACTATTTCACCAAGCGGAGTTG

A28102_at 3 7 1 1216 AGGTGCCAGAGGCCCTGGAGATGAA

...

This particular annotation table (for Hu6800) has 131542 lines.
The relationship from probe sequence to the mapped human genome is charac-

terized by a group at U Michigan. Figure 4 is an excerpt from a spreadsheet used to
disseminate the coordinated mapping, which is accomplished by blasting the probe
sequences against the evolving Unigene representation of the genome.

www.bioconductor.org
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Figure 4: U Michigan mapping from Affy
probe sequences to the annotated genome; see
http://dot.ped.med.umich.edu:2000/ourimage/microarrays/Affy annot/Unigene/index.html.
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Once the connection (or connections, as the biological role of the sequence frag-
ment may depend upon context) between probe sequence and genome is made, a
number of annotation directions can be pursued. Based on the hgu95a and KEGG
data packages, a probe ID can be mapped to various nomenclatures or characteri-
zations of the gene involved.

> annoSumm2("1005_at",30)

gbAcc chr

"X68277" "5"

chrloc chrori

"172896942" "-"

enzyme name

"3.1.3.16" "dual specificity phosphatase 1"

grif ll

"12080474" "1843"

map path

"5q34" "04070 (Phosphatidylinositol si..."

pmid summ

"12080474" "Non-receptor protein-tyrosine ..."

sym unig

"DUSP1" "Hs.171695"

With the handwritten function annoSumm2 idiosyncratic abbreviations are used
to obtain a concise sketch of the available information. The gbAcc field is for the
GenBank accession number in which the probe sequence can be found. The unig
field identifies the UniGene ‘gene oriented transcript cluster’ in which the sequence
can be found. The gene DUSP1 is found on chromosome 5 in the antisense direction;
more precisely the sequence is in band 5q34 at basepair 172986942. The pmid and
grif fields are for PubMed publication accession numbers in which key information
about this sequence has been published (a 2002 paper in Oncogene, in this case).

2.2 Experimental data

The structure and flow of experimental data is generally institution-specific and
hard to predict. Many analytic and managment utilities function by requiring the
user to load a directory with files, or to interactively browse and select files that are
to be analyzed. With the affy package, collections of raw array outputs (Affymetrix
CEL files) can be collected into AffyBatch objects. These are then processed to
background-corrected, co-normalized expression data and organized for the user, in
conjunction with phenotype or experimental treatment data, as an exprSet. The
external presentation of an exprSet is mediated by the formal show method. For
the celebrated Leukemia study of Golub et al (1999), we have

> golubTrain

Expression Set (exprSet) with

7129 genes

38 samples

phenoData object with 11 variables and 38 cases

varLabels:
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Samples: Sample index

ALL.AML: Factor, indicating ALL or AML

BM.PB: Factor, sample from marrow or peripheral blood

T.B.cell: Factor, T cell or B cell leuk.

FAB: Factor, FAB classification

Date: Date sample obtained

Gender: Factor, gender of patient

pctBlasts: pct of cells that are blasts

Treatment: response to treatment

PS: Prediction strength

Source: Source of sample

Not shown in this display is a collection of fields responding to an emerging
standard for microarray metadata: the MIAME (Minimum Information About a
Microarray Experiment) protocol (Nature genetics, volume 29 no. 4 pp 365 - 371,
2001).

> slotNames("MIAME")
[1] "name" "lab" "contact" "title"
[5] "abstract" "url" "samples" "hybridizations"
[9] "normControls" "preprocessing" "other"

The fields in this structure must be filled in a regimented manner in order for the
results of the experiments to be publishable in any of the high-visibility scientific
journals that subscribe to the MIAME standard.

The numerical data are excerpted by:

> exprs(golubTrain)[500:504,1:5]
[,1] [,2] [,3] [,4] [,5]

D50930_at 512 666 1161 1025 785
D50931_at -477 -88 -850 185 -96
D55638_at -152 -197 -434 -139 -55
D55640_at 793 525 848 817 255
D55654_at 1094 2133 2858 2107 3510

Here rows are genes (ESTs putatively associated with genes) and columns are
samples. When these data are subjected to statistical analysis, some ESTs will be
typically be identified as playing a role in the biological process of interest. The
analyst then uses the genomic metadata to rationalize the selection of these ESTs.

Clearly the conormalized array outputs and the “phenodata” are rectangular
data structures that could straightforwardly be managed in an RDBMS. At present
Bioconductor has not emphasized this possibility because the capacity to efficiently
perform arbitrary statistical computation on RDBMS contents is not sufficiently
developed.

2.3 Summary of data structure and flow

The basic information streams reviewed thus far are
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• Disseminated genomic metadata. This includes the probe sequence data, its
location on manufactured chips, its mapping to the genomic sequence, and
the functional characterization of the genomic sequence. It flows from manu-
facturer to mapping specialists (e.g., U Michigan or Bioconductor) and from
institutional bioinformatics centers (e.g., NCBI, EBI) into packaged annota-
tion resources.

• Local experimental data. This includes the raw microarray scanner outputs,
the experimental design metadata and phenotype-related information. This
will flow from a lab or institutional warehouse to the analysis team/platform.

• Results of local statistical analysis. Here the disseminated genomic metadata
are queried in a focused manner to elucidate the expression patterns discovered
in analysis.

Bioconductor has contributed to the structure and curation of disseminated genomic
metadata to facilitate the efficient interpretation of statistical analyses of microarray
experiments. In the next section I provide some details of how this occurs.

3 Curating high-availability metadata structures
for use in R

WWW distribution of high-resolution genomic metadata is well-established, and
indeed most of the annotation materials used in Bioconductor are obtained by
download from central bioinformatics repositories. However, network latencies and
restrictions on frequent queries make it infeasible to employ the WWW as a high-
availability annotation query resolver at this time.

The Data packages node of www.bioconductor.org includes 16 R packages
(regimented collections of functions, data and documentation with integrated test-
ing and quality control tools) embodying metadata on the hgu133a-b, hgu95a-e,
mgu74a-c, rgu34a-c microarray platforms, and on KEGG and GO biological meta-
data resources. The hgu95a package is a collection of environments

> objects("package:hgu95a")
[1] "hgu95a" "hgu95aACCNUM" "hgu95aAFFYCOUNTS"
[4] "hgu95aCHR" "hgu95aCHRLOC" "hgu95aCHRORI"
[7] "hgu95aENZYME" "hgu95aENZYME2AFFY" "hgu95aGENENAME"
[10] "hgu95aGO" "hgu95aGO2AFFY" "hgu95aGO2ALLAFFY"
[13] "hgu95aGRIF" "hgu95aLOCUSID" "hgu95aMAP"
[16] "hgu95aPATH" "hgu95aPATH2AFFY" "hgu95aPMID"
[19] "hgu95aPMID2AFFY" "hgu95aQC" "hgu95aSUMFUNC"
[22] "hgu95aSYMBOL" "hgu95aUNIGENE"

constituting a variety of mappings between terms in different nomenclatures. These
mappings are used manually as follows:

www.bioconductor.org
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> get("1005_at", env=hgu95aGO)
[1] "GO:0004726" "GO:0006979"
> get("1005_at", env=hgu95aPATH)
[1] "04070"
> get("1005_at", env=hgu95aENZYME)
[1] "3.1.3.16" "3.1.3.48"
> get("1005_at", env=hgu95aMAP)
[1] "5q34"

An important mapping for reasoning prospectively from gene function to sets of
probes is provided in the *GO2ALLAFFY environments. We see that Gene Ontology
term GO:0006979 was assigned to 1005 at. The GOBPID2TERM environment of the
GO package allows us to decipher this:

> get("GO:0006979", env=GOBPID2TERM)
[1] "oxidative stress response"

Now to find all probes connected with this oxidative stress response process, we use

> get("GO:0006979", env=hgu95aGO2ALLAFFY)
[1] "41776_at" "1005_at" "34715_at" "41323_at" "41324_g_at"
[6] "38386_r_at" "41631_f_at" "33284_at" "35723_at" "1403_s_at"
[11] "1404_r_at" "1405_i_at" "33789_at" "34363_at" "36620_at"
[16] "34666_at" "39729_at" "36937_s_at" "41432_at" "39136_at"
[21] "35605_at" "399_at" "40104_at" "770_at"

Clearly the mappings must be composed in complex ways in order to be fully useful.
For example, it is not particularly meaningful to find out that a given probe is
involved in pathway 04070. In order to appreciate this we need to be able to decode
the pathway tag and also to examine the behavior of other probes implicated in the
same pathway (if such exist). The design of efficient tools to permit programmatic
composition and navigation of annotation mappings is an ongoing project. At
this time, we focus on issues related to the construction of the various mapping
components.

Several broad issues of database design and management arise in dealing with
the annotation mapping problem.

• Resource and output scope. We have decided that the experimental platform
defines a useful level of focus for mapping tools. Instead of providing a gen-
eral mapping between, e.g., all LocusLink identifiers and GO terms, we first
scale down the problem to the set of LocusLink identifiers associated with a
specific chip, and then carry out the map construction. This leads to some re-
dundancies among the various platform-specific packages, but brings the map
resource components to a manageable and focused scale.

• Multiplicity of sources. As noted above a variety of parties are involved in
annotation. The manufacturers and various institutions (e.g., EBI, Gene Ex-
pression Omnibus) may provide overlapping and conflicting annotation data
with various levels of trustworthiness.
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• Evolving versions. The central annotation resources on gene location, struc-
ture and function are constantly changing. Bioconductor resources need to be
updated, but concepts of backward compatibility also play a role as ongoing
analyses may be adversely affected by real-time modifications to annotation.

A programmatic approach to annotation resource curation is developed in the
AnnBuilder package (Zhang, Carey, Gentleman 2003). The basic components of
this package address problems of

• Central file access: identifying and collecting annotation information from the
primary bioinformatics servers responsible for its basic curation.

• Parsing base files: LocusLink and UniGene data are distributed as weakly
marked up flat files. Perl parsers are provided to collect needed fields for
import to R environments; because Gene Ontology data is distributed as
XML, XML parser functions based on Duncan Temple Lang’s XML library
are provided.

• Unifying multiple incomplete maps with variable trust.

• Navigating and harvesting the GO DAG. This phase employs Postgres to store
the DAG and to extract paths from root to given nodes.

• Exporting XML. Data packages are formatted as XML according to the annotate.dtd
maintained at the Bioconductor site. See Figure 5 for the structure.

Improved performance of R and inevitable complications of requiring a properly
configured Postgres at the user’s end have led to a reformulation of the curation
software in a postgres-free package now known as pubRepo.

In summary, the development of microarray-oriented metadata via R environ-
ments appears to be a successful approach to supporting curation of high-availability
genomic annotation networks. Once the data packages are installed, the annotation
is continuously available (WWW queries not required), and the metadata can be
programmatically linked to the analysis, facilitating general computation on anno-
tation data for biological and clinical inference. It is likely that graphical structures
relating translator environments will be used to support navigation of annotation
networks in forthcoming versions of Bioconductor.

4 SAGElyzer

Serial Analysis of Gene Expression (SAGE) is a comprehensive tool for discovering
genes and quantifying gene or transcript expression (Velculescu et. al. 1995). The
basic organizing element is the tag, a 10 bp sequence derived to uniquely identify a
transcript through its adjacency to the 3’-most nlaIII cleavage site. The frequency
distribution of tags in mRNA obtained from cells or tissues of interest is standard-
ized and organized in a SAGE library. SAGE permits measurement of transcript
expression without restriction to a predetermined set of genes, thus avoiding a basic
limitation of microarray analysis.
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ANNBUILDER:ANNOTATE
|_(annbuilder:attr+,
| |_(annbuilder:target+,
| | |_EMPTY
| |
| |__annbuilder:datemade+,
| | |_EMPTY
| |
| |__annbuilder:version+,
| | |_EMPTY
| |
| |__annbuilder:sourcefile*,
| | |_EMPTY
| |
| |__annbuilder:element*)
| |_EMPTY
|
|
|__annbuilder:data+)

|_(annbuilder:entry*)
|_(annbuilder:item*)

|_EMPTY

Figure 5: annotate.dtd tree structure.
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In 199 SAGE libraries collected for use at Dana Farber Cancer Center, over
500000 unique tags (with associated frequencies irregularly available from library
to library) were present. A postgres database was set up to archive the libraries.
RODBC and Rdbi/RPgSQL interfaces are used to perform a ’chunked’ ranking of
tag profiles in terms of similarity to the profile associated with a user-selected tag.
Specifically, a tag is selected and its frequency profile across libraries is computed.
The user also specifies how large a set N of ’neighbors’ is desired. Chunks of records
are extracted from the database, exported to R, the distance from the target profile
to each chunk element is computed, and the tags and distances for the N nearest
neighbors are saved for each chunk. After the entire database has been scanned,
the chunk-specific extracts are sorted to obtain the N tags nearest to the target.
This vector is then annotated and returned to the user.

5 Alternative DBMS technologies

HDF5 (Hierarchical Data Format version 5) has been interfaced to R for the purpose
of archiving and supporting high-performance navigation of microarray image data.
See the package rhdf5. An alternate implementation of exprSets with BerkeleyDB
C structures has been experimentally deployed as the exprDB package.

6 Future directions

MAGE-ML import/export. Support for the MAGE-OM object model and schemas.
Comprehensive annotation archives in RDBMS in contrast to R environments/packages.
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