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Abstract: Different algorithms for principal component analysis (PCA) based on the
idea of projection pursuit are proposed. We show how the algorithms are constructed,
and compare the new algorithms with standard algorithms. With the R implementation
pcaPP we demonstrate the usefulness at real data examples. Finally, it will be outlined
how the algorithms can be used for robustifying other multivariate methods.
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1 Introduction

Many multivariate statistical methods are based on a decomposition of covariance matri-
ces. For high-dimensional data this approach can be computationally intensive, especially
if the involved covariance matrices should be estimated in a robust way. Moreover, if
the sample size is lower than the dimension, additional problems with robust covariance
estimation will arise.

An alternative approach for obtaining robust multivariate methods is projection pur-
suit (Huber, 1985). For example, in PCA the first component is defined as that direction
maximizing a measure of spread of the projected data on this direction. If a robust spread
measure is considered, the resulting PC is robust. Thus, robust estimation is done only
in one dimension, namely in the direction of the projected data.

A non-trivial task is finding the direction which maximizes an objective function, like
a robust spread measure for robust PCA. In this context, Croux and Ruiz-Gazen (2005)
suggested to use each observation for the construction of candidate directions. We will
extend this idea and introduce other algorithms. In a straightforward manner we can also
obtain other (robust) multivariate methods.

2 Extensions of the Algorithm of Croux and Ruiz-Gazen
(2005)

Croux and Ruiz-Gazen (2005) suggest to use as candidate directions for the first PC all
directions from each data point through the center of the data cloud, estimated e.g. by the
L1-median. Subsequent PCs are estimated in a similar way, but the search is done in the
orthogonal complement of the previously identified PCs. However, due to its construction,
this algorithm may not be very precise for data sets with low sample size n or where n/p
is low, with p being the number of variables. And there is yet another problem: By
construction, the direction is determined by one of the data points. When the data are
projected to the orthogonal complement, the projection of this data point is zero. This
can lead to implosion of the scale estimator if p is sufficiently high.
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To avoid these drawbacks one can add an updating step which is based on the algorithm
for finding the eigenvectors. The drawbacks of the algorithm of Croux and Ruiz-Gazen
(2005) can also be avoided by taking, in addition to the n data points, other candidate
directions for maximizing the objective function. These directions are randomly generated:
Generate n+ data points with p-dimensional multivariate standard normal distribution,
and project the data to the unit sphere. The directions of each generated data point
through the origin are the new random directions, and by definition they have norm one.

3 Grid Algorithm

The optimization is always done in a plane rather than in the p-dimensional space. The
first step is to sort the variables in descending order according to the largest scale. Then
the optimization is done in the plane spanned by the first two sorted variables, where
the candidate directions are constructed by dividing the unit circle into a regular grid of
segments. A second approximation of the projection direction is then found by maximizing
in the plane formed by the first and the third sorted variable. This process is repeated
until the last variable has entered the optimization, which completes the first cycle of the
algorithm. In a second cycle each variable is in turn again considered for improving the
maximal value of the objective function. The algorithm terminates after a fixed number
of cycles or when the improvement is considered to be marginal.

4 Robust Multivariate Methods

Above we described algorithms for estimating the (robust) PCs. We can use these for
building a (robust) covariance matrix, which then can be plugged in into multivariate
methods like factor analysis, canonical correlation analysis or discriminant analysis. On
the other hand, some of the multivariate methods can be reformulated as a projection
pursuit method, and the above algorithms could be applied. This approach was used for
robust continuum regression (Filzmoser et al., 2006).
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