Using multidimensional scaling with Duchon splines for reliable finite area smoothing

David Lawrence Miller

Mathematical Sciences University of Bath

useR! 2011 Warwick University 18 August 2011

Spatial smoothing

- ▶ Have (x, y) locations and some response, z.
- Want a smooth map or to explain spatial auto-correlation.
- ► Thanks to mgcv, inla, sp, etc spatial smoothing now easy.
- ▶ But still some problems e.g. leakage.

Smoothing using splines

Take some set of basis functions, estimate coefficients, penalize based on integrated derivatives (roughness).

$$||f(\mathbf{x},\mathbf{y})-\mathbf{z}||^2 + \lambda J_{m,d}$$

$$J_{2,2} = \int \int \left(\frac{\partial^2 f(x,y)}{\partial x^2}\right)^2 + \left(\frac{\partial^2 f(x,y)}{\partial x \partial y}\right)^2 + \left(\frac{\partial^2 f(x,y)}{\partial y^2}\right)^2 dx dy$$

▶ Here *f* is a thin plate regression spline:

$$f(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \delta_{i} \eta_{md}(r) + \sum_{j=1}^{M} \alpha_{j} \phi_{j}(\mathbf{x}, \mathbf{y})$$

Integrate into bigger models (GAMs/GAMMs/etc).

Solutions to leakage

- ▶ Boundary conditions soap film smoothing (Wood *et al.*, 2008), FELSPLINE (Ramsay, 2002).
- Within-area distance metrics GLTPS (Wang and Ranalli, 2007).
- Domain transformation what I'm going to talk about.

Multidimensional scaling + within-area distances = domain transform

- ▶ MDS: Take $(n \times n)$ symmetric distance matrix, project into (< n) dimensions.
- ► Using Euclidean distances ⇒ same point set (up to scale/rotate).
- Use within-area distances reflect distances travelled by objects in domain.

MDS+TPRS smooths

Projections in higher dimensions

- Ordering and crowding issues.
- Using rg1, 3-D projections look like manifolds.
- ▶ Unreliable smoothing with thin plate in high dimensions.
- Nullspace++ (in size and function complexity)

$$f(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \delta_{i} \eta_{md}(r) + \sum_{i=1}^{M} \alpha_{j} \phi_{j}(\mathbf{x}, \mathbf{y})$$

Nullspace explosion

Duchon splines (I)

Usual thin plate penalty:

$$J_{m,d} = \int \dots \int_{\mathbb{R}^d} \sum_{\nu_1 + \dots + \nu_d = m} \frac{m!}{\nu_1! \dots \nu_d!} \left(\frac{\partial^m f(x_1, \dots, x_d)}{\partial x_1^{\nu_1} \dots \partial x_d^{\nu_d}} \right)^2 dx_1 \dots dx_d$$

- Take Fourier transform and weight on frequencies.
- Fudge nullspace (radial basis makes up for global polys).
- Penalize the "smoother" parts of the radial functions less.
- Becomes:

$$\breve{J}_{m,d} = \int \dots \int_{\mathbb{R}^d} |\tau|^{2s} \sum_{\nu_1 + \dots + \nu_d = m} \frac{m!}{\nu_1! \dots \nu_d!} \Big(\mathfrak{F} \frac{\partial^m f}{\partial x_1^{\nu_1} \dots \partial x_d^{\nu_d}} (\tau) \Big)^2 d\tau$$

Duchon splines (II)

- Smooth in very high dimensions without huge nullspaces.
- Projection dimension selection by GCV score.

Cholorphyll levels in the Aral sea

Generalized distance smoothing

- Distance matrix could be any set of disparities:
 - MP voting records.
 - Distance between patient's gene expressions.
 - Socio-economic indicators.
- Most variation ≠ best predictors.
- Column-wise variance non-constant.
- Issue may be in the metric used.

msg - Multidimensional Scaling for Gams

- Implemented in R as an extra basis in mgcv.
- If you know how to use mgcv, you know how to use msg. b<-gam(z~s(x,y,bs="msg", xt=list(bnd=boundary,mds.dim=4)),data=data)
- GCV dimension selection coming soon.

Conclusion

- msg performs at least as well as soap film in simulation.
- Duchon splines very useful for high dimensional smoothing.
- Can do smoothing of general distance matrices.
- But no killer examples (yet!).
- Do you have any interesting (distance) data?
- Package msg available at http://github.com/dill/msg.

Calculating within-area distances

