
Workshop

Session 5: Tree Models
and their Allies

Bill Venables, CSIRO, Australia

UseR! 2012
Nashville

11 June, 2012

Contents

1 Trees and forests 3

1.1 A trivial example . 5

2 Do you want a credit card? 11

2.1 Training and test groups 12

2.2 An initial tree model . 12

2.3 Simple bagging . 19

2.4 The actual random forest 23

2.5 Parametric models . 27

2.6 The final reckoning . 28

2.7 Some notes on the outcome 30

1

3 Technical highlights 31

References 32

Session information 33

2

1 Trees and forests

� A technique that developed in machine learning and now widely

used in data mining.

� The model uses recursive partitioning of the data and is a greedy

algorithm.

� The two main types of tree models are

– Regression trees — response is a continuous variable and

fitting uses a least squares criterion,

– Classification trees — response is a factor variable and fiting

uses an entropy (multinomial likelihood) criterion.

3

� Model fitting is easy. Inference poses more of a dilemma.

� The tree structure is very unstable. boosting and bagging

(random forests) can be useful ways around this.

� Two pacakges for tree models: rpart (which is part of R itself)

and the older tree, (Ripley., 2012), which has an S-PLUS flavour

and a few advantages for teaching.

Use rpart in practice.

4

1.1 A trivial example

The janka data: a regression tree.

> if(require(tree)) {

janka.tm <- tree(Hardness ~ Density, janka)

plot(janka.tm); text(janka.tm)

}

5

6

> if(require(tree)) {

partition.tree(janka.tm)

points(Hardness ~ Density, janka, col = "brown")

}

7

> require(rpart)

> janka.rm <- rpart(Hardness ~ Density, janka,

control = rpart.control(cp = 0.001, minsize = 3))

> plot(janka.rm); text(janka.rm, xpd = NA)

8

Trees need to be pruned for signal/noise improvement.

> plotcp(janka.rm)

9

The function(s) oneSERule are ours (see later).

> janka.rmp <- prune(janka.rm, cp = oneSERule(janka.rm))

> plot(janka.rmp); text(janka.rmp)

10

2 Do you want a credit card?

Our main example comes from a credit card marketing project in

Zurich. (i.e. the dark side).

� Response: binary variable credit.card.owner

� Candidate predictors: banking behaviour and personal variables

made on banking customers.

� Problem: build a predictive model for credit card ownership.

� Strategies: Trees, bagged trees, random forests, glms.

The data set is creditCards.

> data(creditCards)

> dim(creditCards)

[1] 2085 65

> Store(creditCards)

11

2.1 Training and test groups

As an illustrative devide, we split the data into a training and a test

group.

> set.seed(1234)

> nCC <- nrow(creditCards)

> train <- sample(nCC, 1000)

> CCTrain <- creditCards[train,]

> CCTest <- creditCards[-train,]

> Store(CCTrain, CCTest) ## for safe keeping

2.2 An initial tree model

> library(rpart)

> CCTree <- rpart(credit.card.owner ~ ., CCTrain)

> plot(CCTree)

> text(CCTree)

12

> Store(CCTree)

13

Now check for the need to prune:

> plotcp(CCTree)

14

Pruning is suggested by the ”one standard error” rule. Get the pruned

15

tree:

> CCPTree <- prune(CCTree, cp = oneSERule(CCTree))

> plot(CCPTree)

> text(CCPTree)

> Store(CCPTree)

16

17

The ”one standard error rule” function(s) are listed here for

completeness. The coding details are not of importantce.

> oneSERule <- function (tree, f, ...)

UseMethod("oneSERule")

> oneSERule.rpart <- function (tree, f = 1, ...) {

cp <- data.frame(tree$cptable) #$

imin <- with(cp, which(xerror == min(xerror))[1])

with(cp, CP[which(xerror <= xerror[imin] + f * xstd[imin])[1]])

}

> Store(oneSERule, oneSERule.rpart) ## to make available later

18

2.3 Simple bagging

“Bootstrap aggregation” — invented by Leo Breimann as a device to

stabilise tree methods and improve their predictive capacity. Very

much a “black box” technique.

� Grow a forrest of trees using bootstrap samples of the training

data.

� For predictions average over the forrest:

– For classification trees, take a majority vote,

– For regression trees, take an average.

‘Random forests’, (Liaw and Wiener, 2002), is an of bagging with

extra protocols imposed.

19

Consider bagging “by hand”.

> bagRpart <- local({

bsample <- function(dataFrame) # bootstrap sampling

dataFrame[sample(nrow(dataFrame), rep = TRUE),]

function(object, data = eval.parent(object$call$data),

nBags=200, type = c("standard", "bayesian"), ...) {

type <- match.arg(type)

bagsFull <- vector("list", nBags)

if(type == "standard") {

for(j in 1:nBags)

bagsFull[[j]] <- update(object, data = bsample(data))

} else {

nCases <- nrow(data)

for(j in 1:nBags)

bagsFull[[j]] <- update(object, weights = rexp(nCases))

}

class(bagsFull) <- "bagRpart"

bagsFull

}

})

20

> ## a prediction method for the objects (somewhat tricky!)

> predict.bagRpart <- function(object, newdata, ...) {

X <- sapply(object, predict, newdata = newdata, type = "class")

candidates <- levels(predict(object[[1]], type = "class"))

X <- t(apply(X, 1, function(r) table(factor(r, levels = candidates))))

factor(candidates[max.col(X)], levels = candidates)

}

> Store(bagRpart, predict.bagRpart)

21

Now for an object or two:

> if(!exists("CCSBag")) {

set.seed(4321)

Obj <- update(CCTree, cp = 0.005, minsplit = 9) ## expand the tree

CCSBag <- bagRpart(Obj, nBags = 100)

CCBBag <- bagRpart(Obj, nBags = 100, type = "bayes")

rm(Obj)

Store(CCSBag, CCBBag)

}

22

2.4 The actual random forest

The random forest package, (Liaw and Wiener, 2002), implements this

technology, and more, automatically. The number of trees is set to

500 by default. How many times does each observation get sampled if

we restrict it to 100 trees?

> n <- nrow(CCTest)

> X <- replicate(100,

table(factor(sample(n, rep=TRUE), levels = 1:n)))

> (lims <- range(rowSums(X > 0)))

[1] 50 77

> rm(n, X)

So in this simulation the cases were sampled between 50 and 77 times.

This seems about enough.

23

We now fit the random forest.

> suppressPackageStartupMessages(library(randomForest))

> (CCRf <- randomForest(credit.card.owner ~ ., CCTrain, ntree = 100))

Call:

randomForest(formula = credit.card.owner ~ ., data = CCTrain, ntree = 100)

Type of random forest: classification

Number of trees: 100

No. of variables tried at each split: 8

OOB estimate of error rate: 10.8%

Confusion matrix:

No Yes class.error

No 404 78 0.16182573

Yes 30 488 0.05791506

> Store(CCRf)

24

One nice by-product is variable importances.

> v <- varImpPlot(CCRf) ## causes a plot

> v <- sort(drop(v), decreasing = TRUE)

> v[1:6]

mean.check.credits mean.amnt.atm.withdr

43.10637 38.14263

mean.check.debits mean.salary.deposits

32.51816 30.68258

mean.num.check.cash.withdr mean.check.cash.withdr

25.24800 25.19548

> bestFew <- setdiff(names(v)[1:20], "current.profession") ## used later

25

26

2.5 Parametric models

Tree models and random forests are natural competitors to the

standard parametric models, notably GLMs. We begin with a naive

model based only on what appear good variables in the random forest,

and then consider other modest versions, but automatically produced.

> form <- as.formula(paste("credit.card.owner~", paste(bestFew, collapse="+")))

> Call <- substitute(glm(FORM, binomial, CCTrain), list(FORM = form))

> CCGlmNaive <- eval(Call)

> Store(CCGlmNaive)

> if(!exists("CCGlmAIC")) {

upp <- paste("~", paste(setdiff(names(CCTrain), "credit.card.owner"),

collapse="+"))

upp <- as.formula(upp)

start <- glm(credit.card.owner ~ mean.check.credits+gender,

binomial, CCTrain)

CCGlmAIC <- stepAIC(start, list(upper=upp, low=~1), trace=FALSE)

CCGlmBIC <- stepAIC(CCGlmAIC, trace = FALSE, k = log(nrow(CCTrain)))

27

Store(CCGlmAIC, CCGlmBIC)

rm(start, upp)

}

2.6 The final reckoning

Now to see how things worked out this time. First a helper function

> Class <- function(object, newdata, ...)

UseMethod("Class")

> Class.rpart <- function(object, newdata, ...)

predict(object, newdata, type = "class")

> Class.bagRpart <- function(object, newdata, ...)

predict(object, newdata)

> Class.randomForest <- predict

> Class.glm <- function(object, newdata, ...) {

only applies for binomial glms and symmetric link fns

predict(object,newdata) > 0

}

28

The helper function Class streamlines things a bit:

> errorRate <- function(tab) 100*(1 - sum(diag(tab))/sum(tab))

> true <- CCTest$credit.card.owner #$

> sort(sapply(list(Tree = CCTree,

Pruned = CCPTree,

Bagging = CCSBag,

Bayes = CCBBag,

RandomF = CCRf,

NaiveGLM = CCGlmNaive,

Glm_AIC = CCGlmAIC,

Glm_BIC = CCGlmBIC),

function(x) errorRate(table(Class(x, CCTest),

true))))

RandomF Bagging Bayes Tree Pruned Glm_BIC NaiveGLM Glm_AIC

10.96774 11.98157 12.90323 13.36406 14.47005 14.47005 14.83871 15.02304

29

2.7 Some notes on the outcome

� Random forests a winner, but not by much (≈ 1%) and the “hand

made” versions were next in line. This is not unusual.

Note that the random forest error rate was very close to the

internally estimated “out of bag” estimate from the construction

process.

� The tree models slightly out-performed the parametric models, but

again, not by much.

� Pruning did not improve the tree model, but automatic

construction was about as good as picking variables after some

data snooping! The latter is unusual.

30

3 Technical highlights

� Slide ...

31

References

Liaw, A. and M. Wiener (2002). Classification and regression by

randomForest. R News 2(3), 18–22.

Ripley., B. (2012). tree: Classification and regression trees. CRAN. R

package version 1.0-29.

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics

with S (Fourth ed.). New York: Springer. ISBN 0-387-95457-0.

32

Session information

� R version 2.15.0 (2012-03-30), i386-pc-mingw32

� Locale: LC_COLLATE=English_Australia.1252,

LC_CTYPE=English_Australia.1252,

LC_MONETARY=English_Australia.1252, LC_NUMERIC=C,

LC_TIME=English_Australia.1252

� Base packages: base, datasets, graphics, grDevices, methods,

stats, utils

� Other packages: randomForest 4.6-6, rpart 3.1-53, SOAR 0.99-10,

tree 1.0-29

� Loaded via a namespace (and not attached): tools 2.15.0

33

	Trees and forests
	A trivial example

	Do you want a credit card?
	Training and test groups
	An initial tree model
	Simple bagging
	The actual random forest
	Parametric models
	The final reckoning
	Some notes on the outcome

	Technical highlights
	References
	Session information

