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Introduction 
• The task: 

• Two Traits of subjects (plants) depends on  
  1) Type (variable Entry_Name) and  

  2) Location in 2D Fields  (Field, Row, Column). 

• Dependence of Type – fixed effect, on Location – 

random effect. 

• All locations are different, but similarity decrease 

with distance. 
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Parts of Solution: 
• Descriptive statistics and visualization. 

• Data preparation. 

• Building the model. 

• Validation. 

• Programming. 

• Automation, GUI 

• Optimization of experimental design 
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Building the Model. 
Type – Location Decomposition 

• If the attribute value collected on an experimental 

unit (cell) is represented by the term Y, then the 

attribute can be generally modeled as follows:  

Y = T + L + Err .  

 

• In general liner model (GLM) Y is linked to original 

variable Trait (Trait1 or Trait2) by linking function g() : 
Y = g(Trait) (1)  

Y = T + L + Err (2) 
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Box-Cox optimization 

We looked for g() in form of Box-Cox transformation 

that maximize average by Entry_Name  p-value of  

test Shapiro for normality. 

The result of this procedure 

  
Fun:        I       log(x)   x^1/3    sqrt(x)  x^2       

Shapiro p.value:  0.37635 0.52564  0.49668  0.47207  0.17314  

 

For simplicity we use λ = 0  corresponding to   variable  
Y=log(Trait)  that has almost  highest normality, but 

easier for understanding. 
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• Tests for homoschedastisity also confirmed advantage of  
logarithmic  linking function in glm. 

• So in our program we use log  linking Y  = log(Trait) with 
following variables names: 

  

Tra  = Trait1 or Trait2     (3) 

LTra = Y  = log(Trait)  

  

• with type – location decomposition 

 

Y =  Y_ty + Y_loc + res     (4) 
Tra = Tra_ty * Tra_loc + noise 

  

• where   

Tra_ty = exp(Y_ty)  and  Tra_loc = exp(Y_ loc) 

 
• In our case type “ty” is related to variable Entry_Name and 

location “loc” to tuple (Testing_Site, Field, Row, Column) . 
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Iteration of Type – Location decomposition. 
To get decomposition (2), we use the following iterative procedure: 

 

Y = Y(type, loc) = Y0 = log (Trait) 

  

Do until convergence:               Y_old = Y 

  

T(type) = mean( Y | Type = type)  , where Type = EntryName 

  

L0 = Y – T(type) 

  

For each TSF, using krige.cv  package gstat : 

L(loc) = cv.Predict (Krig(L0 ~ Row + Column, loc, θ)) 

  

Y_new= Y0 - L(loc) 

 

Y = (1 - λ ) * Y_old + λ  * Y_new 

 

Loop until ||Y_new – Y_old|| < ε 

  

T(type) = mean( Y | Type = type)   

  

where θ is the set of parameters of kriging that we have to optimize,  and λ is parameter of acceleration. 
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• We control  SSE (sum of squares of residuals) and 
after it differences becomes smaller than tolerance 
or after fixed number of “burn out” cycles we get 
mean and standard deviation of Y_loc and Y_ty: 

Y_loc.m  = mean(Y_loc |  burnOut < iter ≤ maxiter) 

Y_loc.sd = sd(Y_loc |  burnOut < iter ≤ maxiter) 

 

• Residuals depend on Row, Column after excluding 
Type and Test_Site components: 

 
 library(nlme)  

 fm1 <- lme(LTra ~ Entry_Name, sds, random = ~ 0 |   Entry_Name) 

  #effect of  Testing_Site  ======= 

  sds$resid1= fm1$resid[,1]     # now means by Entry_Name are excluded 

  fm2 <- lme(resid1 ~ TSF, sds, random = ~ 0 | TSF)    # not 

necessary, just to exclude mean by TSF. 

  sds$resid2= fm2$resid[,1]     # now means by TSF are excluded 
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Fig.2. Excluding Type-dependence  in 0- approximation. 
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Kriging cross-validation and optimization. 

• Two  kriging parameters – range and nugget 

• Methods of  Nelder and Mead (1965) 

• Optimization of kriging parameters is very important 

and time-consuming procedure, so our results must 

be considered as preliminary. 

• Linear regression on residuals with predictors Row 

and Column, that we considered as numerical 

variables – so all our prediction on this stage used 

only 4 kriging adjustment parameters – sill, range, 

nugget, and anisotropy. 
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• We also tried to use regression with Row and 

Column as random effects, but found that 

additional degrees of freedom increase AIC: 

 
ds$cRow=paste('r',ds$Row, sep='') 

  ds$cCol=paste('c',ds$Column, sep='') 

 

  lm00= glm( resid2 ~ var1.pred,       data = ds) 

  lm0=  glm( resid2 ~ var1.pred + Column + Row  ,    data = ds) 

  lmR=  glm( resid2 ~ var1.pred + Column + Row + cRow ,   data = ds) 

  lmC=  glm( resid2 ~ var1.pred + Column + Row + cCol ,   data = ds) 

  lmRC= glm( resid2 ~ var1.pred + Column + Row + cCol+ cRow ,  data = ds) 

 

   c(AIC(lm00), AIC(lm0), AIC(lmC), AIC(lmR), AIC(lmRC)) 

#  -3615.188   -3611.492 -3584.912 -3584.497 -3568.149 
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• Kriging on residuals after excluding Type effect in 0-approximation: 

 

Fig.4. Result of kriging + glm for TSF = 7231_F on Loc – dependant part of data 
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Variograms and anisotropy 

Fig 6. Variograms for different angles for TSF = 7605_F5. 
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• From Fig.7 we see that elliptical model  

 

   variogram (diffRow, diffColumn) = f ( (diffRow /a)^2 + (diffColumn /b)^2) 

     

with one parameter of anisotropy   

 

anis = b / a 

 

is not very good fitting for anisotropy but in standard 

kriging procedures only this model of anisotropy is 

implemented. To improve accuracy of our model in 

future we could use a multistep approach to 

overcome this inaccuracy of elliptical model.  
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Choosing number of iterations. 

Fig. 10.  ln(SSE) vs iteration.for different acceleration parameter la = λ. 
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• As a result sharpness of signal increased essentially: 

Fig.9. Density for distribution Tra and Tra_Ty for Trait=1, 
Treatment =2. 
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Programming. Automation, GUI 
• R  for analyzing and modeling 

• packages  'stats', 'sqldf' ,  'spatstat' , 'gstat' , 'sp', „lattice', 'tcltk', 'tkrplot', 

'graphics„ 

Fig.15.Screenshot of GUI 
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Conclusion 
• Noise: The sum of the squared residuals of the 

model should be minimized.  

       Resulting SSE: 

 
Dataset 1:  

Treatment Trait SSE SST Rsq 

1 1 14.308 146.087 0.902 

1 2 48.392 191.456 0.747 

 

Dataset 2:  

Treatment Trait SSE SST Rsq 

1 1 40.769 286.499 0.858 

1 2 80.945 317.27 0.745 

2 1 35.998 150.875 0.761 

2 2 58.341 175.262 0.667 
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• Parsimony: Fitted parameters for location-based artifacts must 
comprise a relatively small portion of the total number of 

parameters.  

 We used only 4 fitting parameters of  kriging for each 

 (Treatment, Trait, TSField) 

• Signal: The remaining signal in the dataset should be 
maximized, as measured by a statistical test to differentiate 

the entries.  

 Sharpness of signal increased essentially, as Fig.8-9 shows. 

• Dropped values: The amount of dropped data values should 
be kept to a minimum.  

 We dropped about  1% as outliers.  

• Speed and ease of use: Some automation with an intuitive 

user-interactive interface. 

 Our GUI has only 6 buttons in Tcl/Tk and only one button 
 in RExcel. 
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• The performance could be improved essentially if we combine 

iterations with cross-validation. Results that we delivered were 

obtained with 20 fold cross-validation and 19 iterations, that means 

dataset was scanned 20 * 19 = 380 times and it took about 154 min. If 

we combine iterations with cross-validation, we estimate to reach the 

same accuracy in about 40 scans, that is 10 time faster, so it would 

take less than 1 min. 

 

• We can also improve accuracy by using two stage kriging to extend 

managing of anisotropy in our variogram model from 1-parameter 

ellipse with main axis in column direction to at least 2-parameters of 

two ellipses in column and row direction or in arbitrary angle. We 

estimate possible accuracy improvement in about 25- 30% decrease 

of SSE.  

Next Steps 
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