Generalized Linear Mixed Model with Spatial Covariates

by Alex Zolot (Zolotovitski) StatVis Consulting

alex@zolot.us

alexzol@microsoft.com

Introduction

- The task:
- Two Traits of subjects (plants) depends on

 Type (variable Entry_Name) and
 Location in 2D Fields (Field, Row, Column).
- Dependence of Type fixed effect, on Location random effect.
- All locations are different, but similarity decrease with distance.

Parts of Solution:

- Descriptive statistics and visualization.
- Data preparation.
- Building the model.
- Validation.
- Programming.
- Automation, GUI
- Optimization of experimental design

•3

Building the Model. Type – Location Decomposition

• If the attribute value collected on an experimental unit (cell) is represented by the term Y, then the attribute can be generally modeled as follows:

Y = T + L + Err .

 In general liner model (GLM) Y is linked to original variable Trait (Trait1 or Trait2) by linking function g() :

$$Y = g(Trait)$$
(1)
$$Y = T + L + Err$$
(2)

Box-Cox optimization

We looked for g() in form of Box-Cox transformation that maximize average by Entry_Name p-value of test Shapiro for normality.

The result of this procedure

Fun:Ilog(x)x^1/3sqrt(x)x^2Shapiro p.value:0.376350.525640.496680.472070.17314

For simplicity we use $\lambda = 0$ corresponding to variable $Y = \log(Trait)$ that has almost highest normality, but easier for understanding.

- Tests for homoschedastisity also confirmed advantage of logarithmic linking function in glm.
- So in our program we use log linking Y = log(Trait) with following variables names:

```
Tra = Trait1 or Trait2
LTra = Y = log(Trait)
```

with type – location decomposition

Y = Y_ty + Y_loc + res Tra = Tra_ty * Tra_loc + noise

- where
 Tra_ty = exp(Y_ty) and Tra_loc = exp(Y_ loc)
- In our case type "ty" is related to variable Entry_Name and location "loc" to tuple (Testing_Site, Field, Row, Column).

(3)

(4)

Iteration of Type – Location decomposition.

To get decomposition (2), we use the following iterative procedure:

Y = Y(type, loc) = Y0 = log (Trait)

```
Do until convergence: Y_old = Y
```

T(type) = mean(Y | Type = type) , where Type = EntryName

L0 = Y - T(type)

```
For each TSF, using krige.cv package gstat:
   L(loc) = cv.Predict (Krig(L0 ~ Row + Column, loc, θ))
   Y_new= Y0 - L(loc)
   Y = (1 - λ ) * Y old + λ * Y new
```

Loop until ||Y_new - Y_old|| < ɛ

T(type) = mean(Y | Type = type)

where θ is the set of parameters of kriging that we have to optimize, and λ is parameter of acceleration.

```
• Alex Zolot. GLMM with Spatial
Covariates
```

 We control SSE (sum of squares of residuals) and after it differences becomes smaller than tolerance or after fixed number of "burn out" cycles we get mean and standard deviation of Y_loc and Y_ty:

> $Y_loc.m = mean(Y_loc | burnOut < iter \le maxiter)$ $Y_loc.sd = sd(Y_loc | burnOut < iter \le maxiter)$

 Residuals depend on Row, Column after excluding Type and Test_Site components:

```
    Alex Zolot. GLMM with Spatial
Covariates
```


Fig.2. Excluding Type-dependence in 0- approximation.

 Alex Zolot. GLMM with Spatial Covariates

•9

Kriging cross-validation and optimization.

- Two kriging parameters range and nugget
- Methods of Nelder and Mead (1965)
- Optimization of kriging parameters is very important and time-consuming procedure, so our results must be considered as preliminary.
- Linear regression on residuals with predictors Row and Column, that we considered as numerical variables – so all our prediction on this stage used only 4 kriging adjustment parameters – sill, range, nugget, and anisotropy.

• We also tried to use regression with Row and Column as random effects, but found that additional degrees of freedom increase AIC:

```
ds$cRow=paste('r',ds$Row, sep='')
ds$cCol=paste('c',ds$Column, sep='')
```

```
lm00= glm( resid2 ~ var1.pred, data = ds)
lm0= glm( resid2 ~ var1.pred + Column + Row , data = ds)
lmR= glm( resid2 ~ var1.pred + Column + Row + cRow , data = ds)
lmC= glm( resid2 ~ var1.pred + Column + Row + cCol , data = ds)
lmRC= glm( resid2 ~ var1.pred + Column + Row + cCol + cRow , data = ds)
```

```
c(AIC(lm00), AIC(lm0), AIC(lmC), AIC(lmR), AIC(lmRC))
# -3615.188 -3611.492 -3584.912 -3584.497 -3568.149
```

Kriging on residuals after excluding Type effect in 0-approximation: •

Alex Zolot. GLMM with Spatial Eig/dia Result of kriging + glm for TSF = 7231_F on Loc - dependent part of data • 12

Variograms and anisotropy

Fig 6. Variograms for different angles for TSF = 7605_F5.

 Alex Zolot. GLMM with Spatial Covariates • From Fig.7 we see that elliptical model

variogram (diffRow, diffColumn) = f ((diffRow /a) 2 + (diffColumn /b) 2)

with one parameter of anisotropy

anis = b / a

is not very good fitting for anisotropy but in standard kriging procedures only this model of anisotropy is implemented. To improve accuracy of our model in future we could use a multistep approach to overcome this inaccuracy of elliptical model.

Choosing number of iterations.

Fig. 10. ln(SSE) vs iteration.for different acceleration parameter la = λ .

 Alex Zolot. GLMM with Spatial Covariates • As a result sharpness of signal increased essentially:

Density Tra and Tra_ty

Fig.9. Density for distribution Tra and Tra_Ty for Trait=1, Treatment =2.

 Alex Zolot. GLMM with Spatial Covariates

Programming. Automation, GUI

- R for analyzing and modeling
- packages 'stats', 'sqldf', 'spatstat', 'gstat', 'sp', 'lattice', 'tcltk', 'tkrplot', 'graphics'

Alex Zolot. GLMM with Spatial

Conclusion

• Noise: The sum of the squared residuals of the model should be minimized.

Resulting SSE:

Dataset 1:

Treatment		Trait	SSE	SST	Rsq
	1	1	14.308	146.087	0.902
	1	2	48.392	191.456	0.747

Dataset 2:

Treatment		Trait	SSE	SST	Rsq
	1	1	40.769	286.499	0.858
	1	2	80.945	317.27	0.745
	2	1	35.998	150.875	0.761
	2	2	58.341	175.262	0.667

• Parsimony: Fitted parameters for location-based artifacts must comprise a relatively small portion of the total number of parameters.

We used only 4 fitting parameters of kriging for each (Treatment, Trait, TSField)

• Signal: The remaining signal in the dataset should be maximized, as measured by a statistical test to differentiate the entries.

Sharpness of signal increased essentially, as Fig.8-9 shows.

• Dropped values: The amount of dropped data values should be kept to a minimum.

We dropped about 1% as outliers.

• Speed and ease of use: Some automation with an intuitive user-interactive interface.

Our GUI has only 6 buttons in TcI/Tk and only one button in RExcel.

Next Steps

- The performance could be improved essentially if we combine iterations with cross-validation. Results that we delivered were obtained with 20 fold cross-validation and 19 iterations, that means dataset was scanned 20 * 19 = 380 times and it took about 154 min. If we combine iterations with cross-validation, we estimate to reach the same accuracy in about 40 scans, that is 10 time faster, so it would take less than 1 min.
- We can also improve accuracy by using two stage kriging to extend managing of anisotropy in our variogram model from 1-parameter ellipse with main axis in column direction to at least 2-parameters of two ellipses in column and row direction or in arbitrary angle. We estimate possible accuracy improvement in about 25- 30% decrease of SSE.

Generalized Linear Mixed Model with Spatial Covariates

by Alex Zolot (Zolotovitski)

<u>alex@zolot.us</u>

www.zolot.us

