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Speed Is Not All That It’s Cranked Up To Be

Evil deeds do not prosper; the slow man catches up
with the swift - Homer (Odyssey)
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Fixed-Point Iterations
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What is a Fixed-Point Iteration?

xk+1 = F (xk ), k = 0,1, . . . .

F : Ω ⊂ Rp 7→ Ω, and differentiable

Most (if not all) iterations are FPI
We are interested in contractive FPI
Guaranteed convergence: {xk} → x∗
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EM Algorithm

Let y , z, x , be observed, missing, and complete data,
respectively.
The k -th step of the iteration:

θk+1 = argmax Q(θ|θk ); k = 0,1, . . . ,

where

Q(θ|θk ) = E [Lc(θ)|y , θk ],

=

∫
Lc(θ)f (z|y , θk )dz,

Ascent property: Lobs(θk+1) ≥ Lobs(θk )
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MM Algorithm

A majorizing function, g(θ| θk ):

f (θk ) = g(θk | θk ),

f (θk ) ≤ g(θ| θk ), ∀ θ.

To minimize f (θ), construct a majorizing function and
minimize it (MM)

θk+1 = argmax g(θ|θk ); k = 0,1, . . .

Descent property: f (θk+1) ≤ f (θk )

Is EM a subclass of MM or are they equivalent? It avoids
the E-step.
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Least Squares Multidimensional Scaling

Minimize : σ(X ) =
1
2

n∑ n∑
wij(δij − dij(X ))2

over all m × p matrices X , where: dij =
√∑p

k=1(xik − xjk )2

Jan de Leeuw’s SMACOF algorithm: ξk+1 = F (ξ),
Has descent property: σ(ξk+1) < σ(ξk )

An instance of MM algorithm
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BLP Contraction Mapping

Previous Talk!

Varadhan SQUAREM



Background
Acceleration of Convergence

Results

Fixed-Point Iterations
Examples

Power Method

To find the eigenvector corresponding to the largest (in
magnitude) eigenvalue of an n × n matrix, A.

Not all that academic - Google’s PageRank algorithm!
xk+1 = A.xk/‖A.xk‖
Stop if ‖xk+1 − xk‖ ≤ ε
Dominant eigenvalue (Rayleigh quotient) = 〈A x∗,x∗〉

〈x∗,x∗〉

Geometric convergence with rate ∝ |λ1|
|λ2|

Power method does not converge if |λ1| = |λ2|, but
SQUAREM does!
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Why Accelerate Convergence?

These FPI are globally convergent
Convergence is linear: Rate = [ρ(J(x∗))]−1

Slow convergence when spectral radius, ρ(J(x∗)), is large
Need to be accelerated for practical application
Without compromising on global convergence
Without additional information (e.g. gradient, Hessian,
Jacobian)
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SQUAREM

An R package implementing a family of algorithms for
speeding-up any slowly convergent multivariate sequence
Easy to use
Ideal for high-dimensional problems
Input: fixptfn = fixed-point mapping F
Optional Input: objfn = objective function (if any)
Two main control parameter choices: order of extrapolation
and monotonicity
Available on R-forge under optimizer project.
install.packages(”SQUAREM”, repos =
”http://R-Forge.R-project.org”)
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Upshot

SQUAREM works great!
Significant acceleration (depends on the linear rate of F )
Globally convergent (especially, first-order locally
non-monotonic schemes)
Finds the same or (sometimes) better fixed-points than FPI
(e.g. EM, SMACOF, Power method)
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Multidimensional Scaling: SMACOF
Power Method for Dominant Eigenvector

SMACOF Results

Mores code data (de Leeuw 2008). 36 Morse signals compared
- 630 dissimilarities & 69 parameters

Table: A comparison of the different schemes.

Scheme # Fevals # ObjEvals CPU (sec) ObjfnValue
SMACOF 1549 1549 471 0.0593
SQ1 213 141 55 0.0593
SQ2 140 57 32 0.0593
SQ3 113 33 24 0.0457
SQ3* 113 0 19 0.0457
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Multidimensional Scaling: SMACOF
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Power Method - Part I

Generated a 1000× 1000 (arbitrary) matrix with eigenvalues as
follows:
eigvals <- c(2, 1.99, runif(997, 0, 1.9), -1.8)

A cool algorithm using the Soules matrix!

Table: A comparison of the different schemes: Average of 100
simulations

Scheme # Fevals CPU (sec) Converged
Power 1687 8.8 100
SQ1 165 0.88 100
SQ2 121 0.69 100
SQ3 115 0.65 100
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Power Method for Dominant Eigenvector

Power Method - Part II

Generated a 100× 100 (arbitrary) matrix with eigenvalues as
follows:
eigvals <- c(2, 1.99, runif(97, 0, 1.9), -2)

Table: A comparison of the different schemes: Average of 100
simulations

Scheme # Fevals CPU (sec) Converged
Power 50000 3.46 0
SQ1 178 0.023 100
SQ2 130 0.031 100
SQ3 122 0.027 100
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For Further Reading I

R. Varadhan, and C. Roland
Scandinavian Journal of Statistics.
2008.

C. Roland, R.Varadhan, and C.E. Frangakis
Numerical Mathematics.
2007.
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