
Weierstrass Institute for
Applied Analysis and Stochastics

Statistical issues in accessing brain functionality
and anatomy

Jörg Polzehl and Karsten Tabelow

UseR! 2010, Kaleidoscope I, July 22

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de · July 22, 2010



fMRI and DWI questions and physics

¥ Strong magnetic field (usually 1.5−3
Tesla(T), up to 10.5 T)

¥ Radio frequency pulse at
Lamour-frequency

¥ Measuring relaxation times (T1
(z-direction), T2 (phase coherence in x-y),
and T ?

2 ) of magnetic spin excitation in
receiver coil(s)

¥ Image generation by 2D-FFT

Goal: Understanding how the brain works

functional Magnetic Resonance Imaging (fMRI):

¥ Locate brain functionality in grey matter

¥ Assessment of population variability

¥ Identification of functional networks

¥ Presurgical planning and diagnosis

Diffusion weighted MR imaging (DWI):

¥ Focus on white matter anatomy

¥ Measure anisotropy of water diffusion in
the brain using additional magnetic field
gradients

¥ Restricted water diffusion within neuronal
fiber bundles
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fMRI experiments and data

¥ 3D x T data

¥ 64×64×30 voxel

¥ Resolution 2×2×4mm3

¥ image formats: DICOM / AFNI / NIFTI
/ Analyze

¥ noise: termal noise, system noise
(variations in magnetic field,
magnetic field inhomogeneity),
physiological noise (respiration, heart
beat)

¥ artifacts from head motion

¥ spatial and temporal correlation

Tools in R (Medical imaging taskview):

¥ Analysis: Packages fMRI and AnalyzefMRI

¥ data IO: Packages fmri, oro.dicom, tractor.base
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Modeling fMRI data (General linear model approach)

¥ Observed Signal in voxel i:

Yit =
∫

∞

0
h(t− t ′)s(t ′)dt ′+g(i, t)+ εit t = 1, . . . ,T i = (ix, iy, iz)

= x>t βi + εit xt = (
∫

∞

0
h(t− t ′)s(t ′)dt ′,1, t, t2,g1(t), . . .)>

¥ Prewhitening using AR(1) error model

¥ Estimate parameters by least squares

¥ Contrast: γ = c>β , γ̂i = c>β̂i, Dγ̂i = c>Dβ̂ic.

¥ Statistical parametric map (SPM): Γ = (γ̂i), i = (ix, iy, iz)

¥ Inference based on SPM

library(fmri)
data128moto <- read.AFNI("test2_128_motor_re+orig")
hrf <- fmri.stimulus(scans = 105, c(18, 48, 78), 15, 2)
z <- fmri.design(hrf)
spm128moto <- fmri.lm(data128moto,z,keep="all")
pvalue128moto <- fmri.pvalue(spm128moto)
plot(pvalue128moto,maxpvalue=0.01,file="test2_128_motor",device="png")‘
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Smoothing in fMRI

Voxelwise analysis

¥ Multiple testing 100000 - 500000 voxel

¥ Adjustment by Bonferroni or FDR leads
to high thresholds

voxelwise decision
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Smoothing in fMRI

Gaussian filter (FWHM bandwidth) + RFT

¥ Multiple testing 100000 - 500000 voxel

¥ Spatial smoothing increases SNR and
decreases number of independent tests

¥ threshold selection by Random Field
Theory

Code:
spm128motosm6 <- fmri.smooth(

spm128moto,hmax=6,
adaptive=FALSE)

pv128motosm6 <- fmri.pvalue(
spm128motosm6)

plot(pv128motosm6,maxpvalue=0.01,
file="test2_128_motorsm6",

device="png")‘

decision using nonadaptive smoothing
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Increasing resolution: going adaptive

Gaussian filter (FWHM bandwidth) + RFT

¥ Increase of resolution decreases SNR

¥ Use of standard filters loses gain from
higher spatial resolution due to larger
bandwidths

Non-adaptive smoothing + RFT
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Increasing resolution: going adaptive

Adaptive smoothing (AWS) + RFT

¥ Increase of resolution decreases SNR

¥ Use of standard filters loses gain from
higher spatial resolution due to larger
bandwidths

¥ Use of adaptive smoothing preserves
spatial structure

Code:
spm128motoaws6 <- fmri.smooth(

spm128moto,hmax=6)
pv128motoaws6 <- fmri.pvalue(

spm128motoaws6)
plot(pv128motoaws6,maxpvalue=0.01,

file="test2_128_motoraws6",
device="png")‘

Structural adaptive smoothing + RFT
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Increasing resolution: going adaptive

Adaptive segmentation

¥ Increase of resolution decreases SNR

¥ Use of standard filters loses gain from
higher spatial resolution due to larger
bandwidths

¥ Use of adaptive smoothing preserves
spatial structure

Code:
spm128motosegm6 <- fmri.segment(

spm128moto,hmax=6)
plot(pv128motosegm6,

file="test2_128_motorsegm6",
device="png")‘

Structural adaptive segmentation
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DWI experiments and data

¥ 3D + S2 data

¥ Measurements of integral values on a regular
grid of voxel (size ≈ 1mm3)

¥ Structures of interest have a diameter of
10−30µm and length of up to 10cm

¥ 1−30 measurements without gradient field (S0)

¥ 12−180 measurements with additional
gradient (S(~g))

¥ gradient directions uniformly sampled from the
sphere S2

¥ Observations live in an 3D orientation score
R3 o S2.

ADC −log(S~g/S0), 140 gradients in one voxel

Tools in R (Medical imaging taskview):

¥ Analysis: Package dti and TractoR
project

Code:

library(dti); demo(mixtens_art) # dwi data in object z
show3d(z[5:6,5:6,5:6],FOV=1); rgl.bg(color="white") # Visualize observations
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The tensor model

¥ Diffusion characterized by a symmetric positive semi-definite 3×3 matrix D

¥ Nonlinear Model
Si(~g)∼ Rice(θi exp(−b~g>Di~g),σ2

i )

¥ Nonlinear regression with positivity constraints

R(ζ ,θ ,D) = ∑
j

(ζ (~g j)−θ exp(−b~g>j Di~g j))2

σ2
j,i(

θ̂i

D̂i

)
= argmin

θ ,D
R(ζ̂i,θ ,D)

Code:

library(dti)
bvec <- read.table("b-directions.txt") # gradients
dwobj <- readDWIdata(bvec,"s0004",format="DICOM",xind=48:204,yind=19:234,nslice=66)
dwobj <- sdpar(dwobj,level=300)# variance estimates and threshold
nytens <- dtiTensor(dwobj) # tensor estimates
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Tensor characteristics

¥ Mean diffusivity Tr(D) = µ1 + µ2 + µ3

¥ Fractional anisotropy (FA)

FA =

√
3
2

√
(µ1−〈µ〉)2 +(µ2−〈µ〉)2 +(µ3−〈µ〉)2

µ2
1 + µ2

2 + µ2
3

,

¥ Geodesic anisotropy (GA) (Fletcher (2004), Corouge (2006))

GA = (
3

∑
i=1

(log(µi)− log(µ))2)1/2, log(µ) =
1
3

3

∑
i=1

log(µi)

¥ Bary-coordinates (characterizing spherical, planar and linear shape)

Cs =
µ3

〈µ〉
Cp =

2(µ2−µ3)
3〈µ〉

Cl =
(µ1−µ2)

3〈µ〉

Code:

nytenschar <- extract(nytens,c("fa","ga","md",’’evalues",’’andir"))
nydtind <- dtiIndices(nytens)
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Visualization of derived quantities

¥ Gray-valued map of mean diffusivity

¥ Color coded FA / GA maps

¥ Principal eigenvector
~e1 = (e1x,e1y,e1z) color coded in RGB

¥ Commonly used

(R,G,B) = (|e1x|, |e1y|, |e1z|) ·FA

¥ Better alternative

(R,G,B) = (e2
1x,e

2
1y,e

2
1z) ·FA

Code:

nyccfa35 <- plot(nydtind,slice=35)
write.image(nyccfa35,"nyccfa35.png")
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Smoothing in DWI ?

¥ Adaptive smoothing provides more stable estimates without loss of structure

¥ enables to reduce recording time

A: unsmoothed B: non-adaptive C: adaptive
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Going HARDI

Limitations of Diffusion Tensor Imaging

¥ DT-model assumes homogeneous fiber structure in a voxel

¥ Reality: high percentage of voxel with fiber crossings or bifurcations

More accurate description

¥ P(~r,~r ′,τ) probability for a particle to diffuse from position~r ′ to~r in time τ

¥ Mean diffusion function (over a voxel V ):

P(~R,τ) =
∫
~r ′∈V, ~R=~r−~r ′

P(~r,~r ′,τ)p(~r ′)d~r ′

¥ Orientation density function (ODF) (weighted radial projection of P, Aganji 2009)

ψ(w)(~u,τ) =
∫

∞

0
r2P(r~u,τ)dr =

1
4π

− 1
8π2

∫ 2π

0 θ=π/2
52

b ln(−lnE))dφ

for anisotropic Gaussian diffusion using Funk-Radon transform, E(~q) = ES~q/S0,

~q = q~u represented as (q,θ ,φ) and 52
bE = 1

q2

[ 1
sin(φ)

δ

δθ
(sinθ

δE
δθ

)+ 1
sin2

θ

δ 2E
δφ 2

]
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estimating ODF’s

Q-Ball imaging:

¥ expansion into spherical harmonics (Descoteaux et al., (2007), Aganj (2009))

ln(− lnE(~gi))=
J

∑
j=1

c jY j(~gi) ψw(~u)=
1

2
√

π
Y1(~u)− 1

16π2

J

∑
j=2

2πPk j (0)k j(k j +1)c jY j(~u)

¥ Fast (linear), high-frequency artifacts (needs regularization), ODF via
Funk-Radon transform is non-linear in E ... (ln(−lnE))).

Tensor Mixture Models:

¥ Model:
S(~g)
S0

= ∑
i

wi exp(−b~g>D−1
i ~g) ∑

i
wi = 1, wi ≥ 0

¥ ODF: Mixture of Angular Central Gaussian distributions

ψ(~u,τ) = (4π)−1
∑

i
wi|Di|−1/2(~u>D−1

i ~u)−3/2

¥ parameter identifiability ? to flexible ... Reparametrization:

Di = λ2I3 +(λ1−λ2)did>i
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Examples

Q-Ball

zqball <- dwiQball(z,order=8,
lambda=1e-2)

show3d(zqball, FOV=1)
rgl.bg(color="white")

Tensor-Mixtures

zmix5 <- dwiMixtensor(z,maxcomp=5)
show3d(zmix5, FOV=1)
rgl.bg(color="white")
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Fiber tracking

¥ DTI and tensor mixture models
provide vector fields of preferred
directions

¥ Currently implemented: Streamline
tracking for tensor and tensor
mixture models

¥ Alternatives: probabilistic tracking,
minimization of energy functionals

Code:

nymix4 <- tracking(dwobj,maxcomp=4)
tracks <- tracking(nymix4,roiz=40)
show3d(tracks, FOV=1)
rgl.bg(color="white")

Fiber tracks crossing slice 35 using tensor
mixtures order 4
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Open problems: Connectivity

Combine results from

¥ fMRI (identification of regions with specific functionality)

¥ DWI (identification of fiber bundel connections )

Goals (see e.g. Hagmann et.al. PLOSone (2007)), Pittsburgh Brain competition.

¥ Construction of connectivity maps

¥ weighted networks of brain connections ( 500-4000 nodes, 25000 - 100000
edges )
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Collaborations

Joint Work with:

¥ Henning Voss, Weill Medical College, Cornell University

Cooperation:

¥ Citigroup Biomedical Imaging Center, Weill Medical College, Cornell University

¥ University of Münster

¥ BNIC, Charitè, Berlin

¥ Max-Plank Institute for Human Cognitive and Brain Sciences, Leipzig

R-Community:

¥ CRAN Task View: Medical Image Analysis
Jonathan Clayden, Pierre Lafaye de Micheaux, Volker Schmid, Brandon Whitcher
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