Investigating ODEs with \mathbb{R} and Spreadsheets

Erich Neuwirth
University of Vienna
Center for Didactics of Computer Science and Learning Researh
erich.neuwirth@univie.ac.at
universität

Investigating ODEs with $\mathbb{R}^{\text {R }}$ and Spreadsheets 图

Erich Neuwirth
University of Vienna
Center for Didactics of Computer Science and Learning Researh
erich.neuwirth@univie.ac.at
universität


```
-a mon
```

universität wien

Motivation

Project for support of introductory service course for ODEs (together with TU Sofia)

R Package deSolve has a set of ODE solvers
Beginning students (neither math nor statistics majors, but engineers) should be able to study ODEs interactively

Students do not know R
Interface should be very simple (and somehow familiar)

Preparation

	A		B	C	D
1	E of dependent variables				
2	Name of dependent variables				
3	N of parameters				
4	Name of parameters				
5	Name of indepependent variable				
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					

Preparation

	A	B	C		D		E
1	N of dependent variables					2	
2	Name of dependent variables						
3	N of parameters					2	
4	Name of parameters						
5	Name of indepependent variable						
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							

Setup

	A	B	C	D	E	
1	N of dependent variables			2		
2	Name of dependent variables			x		
3	N of parameters			2		
4	Name of parameters			p		
5	Name of indepependent variable			t		
6						
7	params	p[1]	p [2]			
8	$\begin{array}{\|l\|} \hline \text { labels } \\ \hline \text { paramvals } \\ \hline \end{array}$	p [1]	p [2]			
9						
10						
11	function	x[1]	x[2]			
12	labels	$\mathrm{x}[1]$	$\times[2]$			
13	deriv					
14	initvals					
15						
16						
17	t	x[1]	x[2]			
18						
19						
20						
21						
22						
23						

universität wien

Setup

	A	B	C	D	E
1	N of dependent variables			2	
2	Name of dependent variables			x	
3	N of parameters			2	
4	Name of parameters			p	
5	Name of indepependent variable			t	
6					
7	params	$\mathrm{p}[1]$	$\mathrm{p}[2]$		
8	labels	p[1]	$\mathrm{p}[2]$		
9	paramvals	1	-1		
10					
11	function	x[1]	x [2]		
12	labels	x[1]	$\times[2]$		
13	deriv	$\mathrm{p}[1]^{*} \times[2]$	p[2]*x[1]		
14	initvals		0		
15					
16					
17	,	x[1]	x[2]		
18					
19					
20					
21					
22					
23					

universität wien

Setup

	A	B	C	D	E
1	N of deper			2	2
2	Name of dependent variables			x	
3	N of parameters			2	2
4	Name of parameters			p	
5	Name of indepependent variable			t	
6					
7	params	$p[1]$	$\mathrm{p}[2]$		
8	labels	p [1]	p [2]		
9	paramvals	1	-1		
10					
11	function	$\mathrm{x}[1]$	x [2]		
12	labels	$\mathrm{x}[1]$	x [2]		
13	deriv	$\mathrm{p}[1]^{\star} \mathrm{x}[2]$	$p[2]^{*} x[1]$		
14	initvals	1	0		
15					
16					
17	t	$\mathrm{x}[1]$	x [2]		
18	0				
19	0.1				
20	0.2				
21	0.3				
22	0.4				
23	0.5				

universität wien

Solve

	A	B	C	D	E
1	N of dependent variables			2	
2	Name of dependent variables			x	
3	N of parameters			2	
4	Name of parameters			p	
5	Name of indepependent variable			t	
6					
7	params	p [1]	p [2]		
8	labels	p [1]	p [2]		
9	paramvals	1	-1		
10					
11	function	x[1]	x [2]		
12	labels	$\mathrm{x}[1]$	x[2]		
13	deriv	$p[1]^{*} x[2]$	$p[2]^{*} x[1]$		
14	initvals	1	0		
15					
16					
17	t	x[1]	x [2]		
18	0		0		
19	0.1	0.995004	-0.09983		
20	0.2	0.980067	-0.19867		
21	0.3	0.955337	-0.29552		
22	0.4	0.921061	-0.38942		
23	0.5	0.877582	-0.47943		

universität wien

Graph of solution

	A	B	C	D	D	E	F	G	H	I	J		K
1	N of depen	dent variabl			2								
2	Name of de	ependent va	variables x	x									
3	N of param	meters			2								
4	Name of pa	arameters		p									
5	Name of in	depependen	nt variable	t									
6													
7	params	$\mathrm{p}[1]$	$\mathrm{p}[2]$										
8	labels	p[1]	p [2]										
9	paramvals	1	-1										
10													
11	function	x[1]	x [2]										
12	labels	x[1]	x [2]										
13	deriv	$\mathrm{p}[1]^{*} \mathrm{x}[2]$	$p[2]^{*} x[1]$		1								
14	initvals	1	0										
15					0.5								
16													
17	t	x[1]	x [2]										
18	0	1	0				1						
19	0.1	0.995004	-0.09983										
20	0.2	0.980067	-0.19867										
21	0.3	0.955337	-0.29552										
22	0.4	0.921061	-0.38942		-1.5								
23	0.5	0.877583	-0.47943										
24	$\bigcirc 6$	0825336	- 0 56464										

universität

 wien
Sliders for parameters

universität wien

Sliders for parameters

	A	B	C	D)	E	F	G	H	I	J		K
1	N of deper	dent variabl			2								
2	Name of de	ependent va	ariables	x									
3	N of param	meters			2								
4	Name of pa	arameters		p									
5	Name of ind	depependen	nt variable	t									
6													
7	params	p [1]	$\mathrm{p}[2]$							*			
8	labels	$p[1]$	p [2]										
9	paramvals	1	-0.7							,			
10													
11	function	x[1]	x [2]		15								
12	labels	$\mathrm{x}[1]$	x [2]										
13	deriv	$p[1]^{*} x[2]$	$p[2]^{*} x[1]$										
14	initvals	1	0										
15													
16					0.5								
17	t	x[1]	x[2]										
18	0	1	0		0								
19	0.1	0.996502	-0.06992				1				4		
20	0.2	0.986033	-0.13935		-0.5								
21	0.3	0.968665	-0.2078										
22	0.4	0.944521	-0.2748										
23	0.5	0.913769	-0.33988										
24	06	ก 876624	- 040258										

universität wien

Example

$$
\begin{aligned}
& x[1]^{\prime}=\mathrm{p}[1]^{*} x[2] \\
& x[2]^{\prime}=\mathrm{p}[2]^{*} \mathrm{x}[1]
\end{aligned}
$$

For $p[1]=1$ we have $x[1]{ }^{\prime}=x[2]$, so $x[2]$ is the derivative of $x[1]$
We can interpret $\mathrm{x}[1]$ as distance and $\mathrm{x}[2]$ as speed

Naming of variables and parameters

Labels for variables and parameters can be used in equations (pendulum example):
$\mathrm{x}[1]$ distance
x[2]
speed
$\mathrm{p}[1]$
acc_constant
$x[1]$ ' $=x[2] \quad$ distance'=speed
$x[2]$ ' $=p[1]^{*} x[1] \quad$ speed'=acc_constant**istance
Meaningful names help understanding the problem under
consideration

Tools for investigation (value added by spreadsheets)

Automatic updating when parameters or initial values change
Sliders for parameters and initial values (direct manipulation interface)

Comparison of different integration methods (Currently Euler-Cauchy, Runge-Kutta $4^{\text {th }}$ order, LSODR (Livermore solver))

