The Bullwhip Effect under a generalized demand process: an R implementation.

Marlene Marchena marchenamarlene@gmail.com

Department of Electrical Engineering Pontifical Catholic University of Rio de Janeiro - Brazil.

The Bullwhip Effect (BE)

Definition: The BE is the increase of the demand variability as one moves up the supply chain.

The supply chain.

The increase in variability in the supply chain.

Quantifying the BE

A common index used to measure the BE is:

$$M = \frac{Var(q_t)}{Var(d_t)}$$

- M = 1, there is no variance amplification.
- M > 1, the BE is present.
- *M* < 1, smoothing scenario.

The model

Inventory model

- Two stage supply chain
- Single item with no fixed cost
- OUT replenishment policy
- MMSE as forecast method

Define:

den an en de d_t : demand L: lead time $y_t = \hat{D}_t^L + z\hat{\sigma}_t^L$ *z*: $\Phi^{-1}(\alpha)$ $SSLT = z\hat{\sigma}_{t}^{L}$

$$\alpha: \text{ the desired SL} \\ \hat{D}_t^L = \sum_{\tau=1}^L \hat{d}_{t+\tau} \\ \hat{\sigma}_t^L = \sqrt{Var(D_t^L - \hat{D}_t^L)} \\ SS = z\sigma_d\sqrt{L}$$

$$q_t = y_t - (y_{t-1} - d_t) = (\hat{D}_t^L - \hat{D}_{t-1}^L) + z(\hat{\sigma}_t^L - \hat{\sigma}_{t-1}^L) + d_t$$

• Demand model, ARMA(p,q)

$$d_t = \mu + \phi_1 d_{t-1} + \dots + \phi_p d_{t-p} + \epsilon_t + \theta_1 \epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q}$$

$$\Phi_p(B)d_t = \mu + \Theta_q(B)\epsilon_t$$

$$\Phi_{\rho}(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_{\rho} B^{\rho}$$
$$\Theta_q(B) = 1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q$$

Infinite MA representation of the demand

$$\Phi_p(B)d_t = \mu + \Theta_q(B)\epsilon_t$$

$$d_t = \mu_d + \frac{\Theta_q(B)}{\Phi_p(B)} \epsilon_t = \mu_d + \Psi(B) \epsilon_t$$

where

$$\mu_d = \mu/(1 - \phi_1 - \dots - \phi_p)$$
 and $\Psi(B) = 1 + \psi_1 B + \psi_2 B^2 + \dots$

Recursively calculation

$$\begin{array}{lll} \psi_j & = & \sum_{i=1}^{p} \phi_i \psi_{j-i} \theta_j \\ \psi_0 & = & 1, \ \psi_j = 0, \ \text{for } j < 0 \end{array}$$

Zhang's (2004) results

The bullwhip effect measure is given by:

$$M = \frac{Var(q_t)}{Var(d_t)} = 1 + \frac{2\sum_{i=0}^{L}\sum_{j=i+1}^{L}\psi_i\psi_j}{\sum_{j=0}^{\infty}\psi_j^2}$$

which implies that there is a bullwhip effect if and only if

$$\sum_{i=0}^{L}\sum_{j=i+1}^{L}\psi_{i}\psi_{j}>0$$

Increasing lead-time exacerbates bullwhip effect if

$$\psi_{L+1}\sum_{j=0}^L\psi_j>0$$

Conclusions

AR(1) case

The AR(1) demand process is described as follow:

$$d_t = \mu + \phi d_{t-1} + \epsilon_t, \ |\phi| < 1$$

Results:

$$\psi_j=\phi^j$$
, for $j=0,1,2,..$

$$M = 1 + rac{2\phi(1-\phi^L)(1-\phi^{L+1})}{1-\phi}$$

There is a bullwhip effect if and only if $\phi > 0$.

Figure 1: Relationship between the bullwhip effect and demand autocorrelation

An R implementation: SCperf

Description: Computes the BE and other SC performance variables.

Usage: SCperf(ar, ma, L, SL)

Arguments:

- ar: a vector of AR parameters,
- ma: a vector of MA parameters,
- L: is the LT plus the review period which is equal to one,
- SL: service level, 0.95 by default.

Example:

> SCperf(0.95, 0.1, 2, 0.99) bullwhip VarD VarLT SS SSLT z 1.5029 12.3077 5.2025 11.5419 5.3062 2.3264 _

_

Table1: BE, SS and SSLT generated by SCperf(0.95,0.4,L,0.95)

L	Bullwhip	SS	SSLT
1	1 1 2 7 1 1	7 200	1.645
2	1.13711	10 323	1.04J 4 201
2	1 80270	12 643	7 304
4	2.46294	14.598	10.817
5	3.13393	16.322	14.652
6	3.88802	17.879	18.745
7	4.70970	19.312	23.048
8	5.58531	20.645	27.522
9	6.50289	21.898	32.137
10	7.45199	23.082	36.867

Table 2: SS and SSLT generated by SCperf(0.95,0.4,L,SL)

	L=1		L=	L=2		L=3	
SL	SS	SSLT	SS	SSLT	SS	SSLT	
0.90	5.687	1.282	8.043	3.273	9.850	5.691	
0.91	5.950	1.341	8.414	3.424	10.305	5.954	
0.92	6.235	1.405	8.818	3.588	10.800	6.239	
0.93	6.549	1.476	9.262	3.769	11.343	6.553	
0.94	6.899	1.555	9.757	3.971	11.950	6.904	
0.95	7.299	1.645	10.323	4.201	12.643	7.304	
0.96	7.769	1.751	10.987	4.471	13.456	7.774	
0.97	8.346	1.881	11.803	4.803	14.456	8.352	
0.98	9.114	2.054	12.889	5.245	15.785	9.120	
0.99	10.323	2.326	14.599	5.941	17.881	10.330	

Conclusions

- SCperf overcomes the difficulty of calculate the BE thanks to the help of ARMAtoMA function.
- The use of SCperf makes possible to get accurate estimations of the BE and other SC performance variables.
- For certain types of demand processes the use of MMSE leads to significant reduction in the safety stock level.
- SCperf leads to a simple but powerful tool which can be helpful for the study of SCM research problems.
- SCperf might be used to complement other managerial support decision tools.

References:

- Truong, D., Huynh, T., and Yeong-Dae, K., 2008. A measure of the bullwhip effect in supply chains with a mixed autoregressive moving average demand process. European Journal of Operational Research 187, 243-256.
- Zhang, X., 2004a. *The impact of forecasting methods on the bullwhip effect*.International Journal of Production Economics Vol 88 No 1, 15-27.
- Zhang, X., 2004b. Evolution of ARMA demand in supply chains. Manufacturing and Services Operations Management 6 (2), 195-198.