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Magnetic Resonance Imaging (MRI)

MRI is a non-invasive method for imaging the
inside of objects.

MRI has many medical applications.

Different contrast: T1, T2, PD

Sometimes more than one image type is
available.

Each image is a 3D array of image intensities,
one for each voxel (volume picture element).
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Brain Tissue Classification

Major brain tissue types:

White matter (WM)
Gray Matter (GM)
Cerebrospinal fluid (CSF)

There are others, but tissue classification
usually focuses on these.

Some applications:

Diagnosis of disease
Surgery preparation

Manual tissue classification is very labor
intensive.

Automated methods try to match quality of
manual at lower cost.

Focus on using intensities in a T1 MR
image.

WM = light gray

GM = medium gray

CSF = dark gray
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Basic Properties of the Data

Data consist of image intensities y1, ..., yN for N voxels in a 3D grid.

N is large, for example 256× 256× 192.

Intensities are often scaled to [0, 255] and rounded to an integer.

Tissue types are denoted by zi ∈ {1, . . . , k} with k = 3 corresponding
to three tissue types.

A density plot of a relatively low noise MR image:
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A Simple Mixture Model

A common model: given the tissue structure z, intensities are

independent
normally distributed,

yi |zi ∼ N(µ(zi ), σ
2(zi ))

Mean and and variance depend on the tissue type.

Assuming tissue types are independent leads to a simple normal
mixture model

f (y) =
N∏

i=1

k∑
zi=1

φµ(zi ),σ2(zi )(yi )p(zi = k)

Parameters are easily estimated by the EM algorithm.

Tissue types can be assigned using the Bayes classifier.
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Incorporating Spatial Information

Adjacent voxels are likely to contain the same tissue type.

A more realistic model accounts for this spatial homogeneity in z .

The Potts model family provides simple models for spatial
homogeneity:

p(z) = C (β)−1 exp

∑
i

αi (zi ) + β
∑
i∼j

wij f (zi , zj)


This is an example of a Markov random field model.
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Incorporating Spatial Information
Iterated Conditional Modes

The hidden Markov normal mixture model

p(y|z,µ,σ2)p(z)

can be fitted by

Iterated Conditional Modes (ICM) algorithm—
alternately maximizing each parameter conditional on all others being
fixed.

Hidden Markov Random Field EM (HMRFEM) algorithm—
a variation of EM algorithm in the E step.
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Incorporating Spatial Information
A Bayesian Formulation

Alternatively, we can

specify a prior distributions p(µ,σ2) on µ,σ2

use MCMC to compute characteristics of the posterior distribution

p(µ,σ2, z|y)

Assume µ,σ2, z are independent and

µ i.i.d. normal distribution
σ2 i.i.d inverse Gamma distribution

Then the full conditionals satisfy

µ independent normal
σ2 independent inverse Gamma
z Potts model with external field

αi (zi ) = log f (yi |µ(zi ), σ(zi ))
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Partial Volume Effect

Partial volume effect—some voxels contain more than one tissue type.

One approach is to introduce intermediate classes: CG (CSF/GM)
and GW (GM/WM).

This helps reduce confounding in estimation.

A number of studies have used this approach.

Normal mixture model with dependent means and variances (GPV)
performs well.

The means and variances of CG and GW are equal to weighted average
of corresponding pure tissues
The densities of voxels from CG and GW are equal to mean densities
based on the distribution of weights
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A Higher Resolution Spatial Model

We have adopted a different approach:

Each voxel is divided in half in the x , y , z directions, producing 8
subvoxels.

Each subvoxel is viewed as containing only one tissue type.

The observed voxel intensity yi is

yi = vi1 + . . . + vi8

where vi1, . . . , vi8 are the unobserved subvoxel intensities.
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A Higher Resolution Spatial Model
The Subvoxel-level Model

Conditional on the tissue types, the vij are independent normals

A spatial model is used at the subvoxel level

To capture the fact that CSF and WM rarely coexist in a voxel we use:

p(z) = C (β1, β2)
−1 exp

∑
i∼j

f (zi , zj)


where

f (zi , zj) =


β1 if zi = zj

−β2 if {zi , zj} = {CSF,WM}
0 otherwise

We call this model the Repulsion Potts Model

Use a Bayesian formulation to solve it
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Computational Issues—Table Lookup

Table lookup methods are used in various places due to:

the nature of the data—
intensities are integers between 0 and 255.

the nature of the distribution from the Potts family—
given neighbors, the tissue type of voxels having the same discrete
distribution.
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Computational Issues—Conditional Independence

If the voxels are organized in a checkerboard pattern,

then black voxels are conditionally independent given white ones.

Black and white voxels can each be updated as a group.

This can be used for vectorized computation.

This can also be used for parallel computation.
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Computational Issues——OpenMP

1 #pragma omp parallel for firstprivate (←↩

k , ldD , . . . )
2 for ( i = 0 ; i < n ; i++) {
3 }

1 for ( i = 0 ; i < n ; i++) {
2 }

Specifying parallel execution
by compiler pragmas (directives)

Specifying variable type

Implicit barrier
for synchronization
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Computational Issues——OpenMP
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Overview of Functions of the Package

The ”Analyze”, ”NIfTI”, and raw byte file formats are supported for
input and output

Different functions for different methods are provided

Initial values of the means, variances, and proportions of normal
mixture models can be generated by the function initOtsu

Various spatial input parameters for different methods can be
obtained using the function makeMRIspatial

There is a wrapper for functions with easier usage
mritc(intarr, mask, method)

Generic summary and plot methods are provided for the object of
class ”mritc”

Different metrics for accuracy of predictions based on truth are
available
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An Example

R> T1 <- readMRI("t1.rawb.gz", c(181,217,181),
format="rawb.gz")

R> slices3d(T1)
R> mask <- readMRI("mask.rawb.gz", c(181,217,181),

format="rawb.gz")
R> tc <- mritc(T1, mask, method="MCMCsub")
R> plot(tc)

Figure: Tissue Classification

(a) Raw Data (b) Classified
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