Computer Experiments

- The design and analysis of computer experiments to explore the behavior of complex systems is becoming increasingly important in science and engineering.
- At least two books on the topic:
- The Design and Analysis of Computer Experiments. T. J. Santner, B. J. Williamns, W.I Notz. (2003), Springer: New York.
- Design and Modeling for Computer Experiments. K-T. Fang, R. Li, A. Sudjianto. (2006), Chapman \& Hall/CRC: London.
- Some R packages-more on that later

Nimrod Set of Tools

Nimrod contains tools to

- perform a complete parameter sweep across all possible combinations (Nimrod/G),
- search using non-linear optimization algorithms (Nimrod/O),
- or use fractional factorial design techniques (Nimrod/E).
These can be run stand-alone or accessed via the Nimrod portal

Nimrod Applications

Nimrod has been used in an extensive range of applications

- Air Pollution Studies
- Laser Physics
- Ecology
- Quantum Chemistry
- CAD Digital Simulation
- Antenna Design
- Cardiac Modelling

Computer Experiments-Designs

- Simplest method-Latin Hypercubes
- Other more sophisticated methods include Orthogonal Arrays and Scrambled Nets.
- Various space filling designs.

Statistical Approach to Computer Experiments

- Unlike physical experiments, repeated experiments give the same results.
- Model the output as the realisation of a stochastic process with a correlation structure that depends on a distance to other points in the experiment.
- Allows estimates of untried experiments.
- Gives an estimate of the uncertainty.

Computer Experiments-Model

$$
\begin{gathered}
\text { Response }=\text { Linear Model }+ \text { Departure } \\
y(x)=\beta+z(x) \\
E(z(x)=0 \\
\operatorname{Cov}(z(t), z(u))=\sigma_{z}^{2} \prod_{j=1}^{d} R_{j}\left(t_{j}, u_{j}\right) \\
R_{j}\left(t_{j}, u_{j}\right)=\exp \left[-\theta_{j}\left(t_{j}-u_{j}\right)^{p_{j}}\right]
\end{gathered}
$$

MLE of θ, p, β, and σ^{2}
Reduces to numerically optimising

$$
-\frac{1}{2}\left(n \ln \hat{\sigma}^{2}+\ln \operatorname{det} R_{D}\right)
$$

$R_{D}=$ Matrix of correlations for design points

$$
\begin{aligned}
\hat{\beta} & =\left(1^{T} R_{D}^{-1} 1^{T}\right)^{-1} 1^{T} R_{D}^{-1} y \\
\hat{\sigma}^{2} & =\frac{1}{n}(y-1 \hat{\beta})^{T} R_{D}^{-1}(y-1 \hat{\beta})
\end{aligned}
$$

Implementations in R

- BACCO
- Emulator
- Approximator
- Calibrator
- mlegp: an R package for Gaussian process modeling and sensitivity analysis
- Certainly others ...

Best Linear Unbiased Predictor for an untried x

$$
\hat{y}_{x}=\hat{\beta}+r^{\top}(x) R_{D}^{-1}(y-1 \hat{\beta})
$$

where

$$
r(x)=\left[R\left(x_{1}, x\right), R\left(x_{2}, x\right), \ldots, R\left(x_{n}, x\right)\right]^{\top}
$$

Design point: $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ Untried Input: x Interpolates the data points.

Nimrod/K

- A new tool (Nimrod/K) is being developed, based on the Kepler workflow engine (Kepler Core, 2009).
- It leverages a number of the techniques developed in the earlier Nimrod tools for distributing tasks to the Grid.
- Kepler allows the user to specify R expressions and access R objects as part of the scientific workflow.

Example Workflow

Workflow

- The Latin Hypercube Actor creates the design
- Nimrod takes the experimental design and controls the running of the experiments and collation of results.
- Passes the results onto mlegp actor which fits the Gaussian model to the data.
- The Predictions Actor takes fitted model and predicts at a grid of untried inputs.
- Inputs are the granularity of the grid, and which are the primary and conditioning inputs.
- Uses Lattice graphics to produce a visualisation of the surface.

Example Workflow

VizCompX

VizCompX

Extensions

The overall mean is

$$
y_{0}=\int_{[0,1]^{d}} y\left(x_{1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{d}
$$

The main effect is

$$
y_{i}\left(x_{i}\right)=\int_{0}^{1} \ldots \int_{0}^{1} y\left(x 1, \ldots, x_{d}\right) d x_{-i}-y_{0}
$$

The two factor interaction is

$$
\begin{aligned}
y_{i, j}\left(x_{i}, x_{j}\right)= & \int_{0}^{1} \ldots \int_{0}^{1} y\left(x 1, \ldots, x_{d}\right) d x_{-i j} \\
& -y_{0}-y_{i}\left(x_{i}\right)-y_{j}\left(x_{j}\right)
\end{aligned}
$$

Extensions

