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Computer Experiments

◮ The design and analysis of computer
experiments to explore the behavior of complex
systems is becoming increasingly important in
science and engineering.

◮ At least two books on the topic:
◮ The Design and Analysis of Computer

Experiments. T. J. Santner, B. J. Williamns, W.I
Notz. (2003), Springer: New York.

◮ Design and Modeling for Computer Experiments.
K-T. Fang, R. Li, A. Sudjianto. (2006), Chapman
& Hall/CRC: London.

◮ Some R packages-more on that later.
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Nimrod

◮ Developed by Computer Scientists at Monash
University’s eScience and Grid Engineering
Laboratory.

◮ Automates the formulation, running, and
collation of the individual experiments.

◮ Includes a distributed scheduling component
that can manage the scheduling of individual
jobs.
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Nimrod Set of Tools

Nimrod contains tools to

◮ perform a complete parameter sweep across all
possible combinations (Nimrod/G),

◮ search using non-linear optimization algorithms
(Nimrod/O),

◮ or use fractional factorial design techniques
(Nimrod/E).

These can be run stand-alone or accessed via the
Nimrod portal
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Nimrod Applications

Nimrod has been used in an extensive range of
applications

◮ Air Pollution Studies

◮ Laser Physics

◮ Ecology

◮ Quantum Chemistry

◮ CAD Digital Simulation

◮ Antenna Design

◮ Cardiac Modelling
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Statistical Approach to Computer
Experiments

◮ Unlike physical experiments, repeated
experiments give the same results.

◮ Model the output as the realisation of a
stochastic process with a correlation structure
that depends on a distance to other points in
the experiment.

◮ Allows estimates of untried experiments.

◮ Gives an estimate of the uncertainty.

6 / 19

Computer Experiments-Designs

◮ Simplest method-Latin Hypercubes

◮ Other more sophisticated methods include
Orthogonal Arrays and Scrambled Nets.

◮ Various space filling designs.
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Computer Experiments-Model

Response = Linear Model + Departure

y(x) = β + z(x)

E (z(x) = 0

Cov(z(t), z(u)) = σ2
z

d∏
j=1

Rj(tj , uj)

Rj(tj , uj) = exp [−θj(tj − uj)
pj ]
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MLE of θ, p, β, and σ2

Reduces to numerically optimising

−

1

2
(n ln σ̂2 + ln detRD)

RD = Matrix of correlations for design points

β̂ = (1TR−1
D 1T )−11TR−1

D y

σ̂2 =
1

n
(y − 1β̂)TR−1

D (y − 1β̂)
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Best Linear Unbiased Predictor for an
untried x

ŷx = β̂ + rT (x)R−1
D (y − 1β̂)

where

r(x) = [R(x1, x), R(x2, x), . . . , R(xn, x)]T

Design point : [x1, x2, . . . , xn] Untried Input : x

Interpolates the data points.
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Implementations in R

◮ BACCO
◮ Emulator
◮ Approximator
◮ Calibrator

◮ mlegp: an R package for Gaussian process
modeling and sensitivity analysis

◮ Certainly others . . .
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Nimrod/K

◮ A new tool (Nimrod/K) is being developed,
based on the Kepler workflow engine (Kepler
Core, 2009).

◮ It leverages a number of the techniques
developed in the earlier Nimrod tools for
distributing tasks to the Grid.

◮ Kepler allows the user to specify R expressions
and access R objects as part of the scientific
workflow.
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Example Workflow
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Example Workflow
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Workflow
◮ The Latin Hypercube Actor creates the design

◮ Nimrod takes the experimental design and
controls the running of the experiments and
collation of results.

◮ Passes the results onto mlegp actor which fits
the Gaussian model to the data.

◮ The Predictions Actor takes fitted model and
predicts at a grid of untried inputs.

◮ Inputs are the granularity of the grid, and
which are the primary and conditioning inputs.

◮ Uses Lattice graphics to produce a visualisation
of the surface.
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VizCompX
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VizCompX

design <- LatinHypercube(50,3,maxs=rep(25,3))

response <- NimrodOexample(design)

mlegpfit <- mlegp(design,response)

wireframe(mlegpfit,c(5,5,4),c(1,2))
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Extensions
The overall mean is

y0 =

∫
[0,1]

d
y(x1, . . . , xd)dx1 . . . dxd

The main effect is

yi(xi) =

∫ 1

0

. . .

∫ 1

0

y(x1, . . . , xd)dx
−i − y0

The two factor interaction is

yi ,j(xi , xj) =

∫ 1

0

. . .

∫ 1

0

y(x1, . . . , xd)dx
−ij

−y0 − yi(xi) − yj(xj)
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Extensions

x1 Joint Effect Joint Effect

Interaction Effect x2 Joint Effect

Interaction Effect Interaction Effect x3
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