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Network modeling from a statistical perspective

Networks are widely used to represent data on relations between
interacting actors or nodes.

The study of social networks is multi-disciplinary
plethora of terminologies
varied objectives, multitude of frameworks

Understanding the structure of social relations has been
the focus of the social sciences

social structure: a system of social relations tying distinct social
entities to one another
Interest in understanding how social structure form and evolve

Attempt to represent the structure in social relations via networks
the data is conceptualized as a realization of a network model

The data are of at least three forms:
individual-level information on the social entities
relational data on pairs of entities
population-level data
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Deep literatures available

Social networks community (Heider 1946; Frank 1972; Holland and Leinhardt 1981)

Statistical Networks Community (Frank and Strauss 1986; Snijders 1997)

Spatial Statistics Community (Besag 1974)

Statistical Exponential Family Theory (Barndorff-Nielsen 1978)

Graphical Modeling Community (Lauritzen and Spiegelhalter 1988, . . . )

Machine Learning Community (Jordan, Jensen, Xing, .... . . )

Physics and Applied Math (Newman, Watts, . . . )



Examples of Friendship Relationships

The National Longitudinal Study of Adolescent Health
⇒ www.cpc.unc.edu/projects/addhealth

– “Add Health” is a school-based study of the health-related
behaviors of adolescents in grades 7 to 12.

Each nominated up to 5 boys and 5 girls as their friends

160 schools: Smallest has 69 adolescents in grades 7–12

www.cpc.unc.edu/projects/addhealth
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Features of Many Social Networks

Mutuality of ties

Individual heterogeneity in the propensity to form ties

Homophily by actor attributes
⇒ Lazarsfeld and Merton, 1954; Freeman, 1996; McPherson et al., 2001

higher propensity to form ties between actors with similar attributes
e.g., age, gender, geography, major, social-economic status
attributes may be observed or unobserved

Transitivity of relationships
friends of friends have a higher propensity to be friends

Balance of relationships ⇒ Heider (1946)
people feel comfortable if they agree with others whom they like

Context is important ⇒ Simmel (1908)
triad, not the dyad, is the fundamental social unit
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The Choice of Models depends on the objectives

Primary interest in the nature of relationships:

– How the behavior of individuals depends on their
location in the social network

– How the qualities of the individuals influence the
social structure

Secondary interest is in how network structure influences
processes that develop over a network

– spread of HIV and other STDs
– diffusion of technical innovations
– spread of computer viruses

Tertiary interest in the effect of interventions on
network structure and processes that develop over a network
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Perspectives to keep in mind

Network-specific versus Population-process

– Network-specific: interest focuses only on the actual network
under study

– Population-process: the network is part of a population
of networks and the latter is the focus of interest

- the network is conceptualized as a realization of a social
process



The statnet project (2000-present)

Mission: Develop new statistical methodology for the representation,
visualization, analysis and simulation of (social) network data

– develop computational methods for these statistical methods
– implement these methods within a coherent suite of user-friendly
R packages
– make them open-source and foster a community outside the
developers

Primary sources of information

– http://statnet.org:
website, software, manuals, documentation, community

– http://www.jstatsoft.org/v24:
Special volume of the Journal of Statistical Software on statnet

http://statnet.org
http://www.jstatsoft.org/v24


Statnet Commons

Statnet Commons, a collaborative effort among individual statnet
developers and their institutions.
The Statnet Commons aims to:

coordinate development of the Statnet software by contributing
organizations

to manage the resulting work for the advancement of public benefit

provide for an environment of continuous sharing and collaborative
work among individual members

provide a mechanism for releasing stable versions of the software
under GPL at regular intervals.

Community activities

– Pedagogical efforts: tutorials, workshops, seminars
– Make it easy to add new packages that can add functionality to
statnet



Statistical Models for Social Networks

Notation

A social network is defined as a set of n social “actors” and a social
relationship between each pair of actors.

Yij =

�
1 relationship from actor i to actor j

0 otherwise

call Y ≡ [Yij ]n×n a sociomatrix

a N = n(n − 1) binary array

The basic problem of stochastic modeling is to specify a distribution
for Y i.e., P(Y = y)
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A Framework for Network Modeling

Let Y be the sample space of Y e.g. {0, 1}N

Any model-class for the multivariate distribution of Y

can be parametrized in the form:

Pη(Y = y) =
exp{η·g(y)}

κ(η,Y)
y ∈ Y

Besag (1974), Frank and Strauss (1986)

η ∈ Λ ⊂ R
q

q-vector of parameters

g(y) q-vector of network statistics.
⇒ g(Y ) are jointly sufficient for the model

For a “saturated” model-class q = |Y|− 1 e.g. 2N − 1

κ(η,Y) distribution normalizing constant

κ(η,Y) =
�

y∈Y
exp{η·g(y)}



Simple model-classes for social networks

Homogeneous Bernoulli graph (Erdős-Rényi model)

Yij are independent and equally likely
with log-odds η = logit[Pη(Yij = 1)]

Pη(Y = y) =
e

η
P

i,j yij

κ(η,Y)
y ∈ Y

where q = 1, g(y) =
�

i,j yij , κ(η,Y) = [1 + exp(η)]N

homogeneity means it is unlikely to be proposed as a model for real
phenomena



Dyad-independence models with attributes

Yij are independent but depend on dyadic covariates xk,ij

Pη(Y = y) =
e

Pq
k=1

ηkgk (y)

κ(η,Y)
y ∈ Y

gk(y) =
�

i,j

xk,ijyij , k = 1, . . . , q

κ(η,Y) =
�

i,j

[1 + exp(
q�

k=1

ηkxk,ij)]

Of course,
logit[Pη(Yij = 1)] =

�

k

ηkxk,ij
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Generative Theory for Network Structure

Actor Markov statistics
⇒ Frank and Strauss (1986)

– motivated by notions of “symmetry” and “homogeneity”

– Yij in Y that do not share an actor are
conditionally independent given the rest of the network

⇒ analogous to nearest neighbor ideas in spatial modeling

Degree distribution: dk(y) = proportion of actors of degree k in y .

triangles: triangle(y) =
number of triads that form a complete sub-graph in y .
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Classes of statistics used for modeling

1) Nodal Markov statistics ⇒ Frank and Strauss (1986)

– motivated by notions of “symmetry” and “homogeneity”
– edges in Y that do not share an actor are

conditionally independent given the rest of the network
⇒ analogous to nearest neighbor ideas in spatial statistics

• Degree distribution: dk(y) = proportion of nodes of degree k in y.

• k-star distribution: sk(y) = proportion of k-stars in the graph y.

• triangles: t1(y) = proportion of triangles in the graph y.

• •

•
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⇐ Mark S. Handcock Statistical Modeling With ERGM →



More General mechanisms motivated by conditional
independence

⇒ Pattison and Robins (2002), Butts (2005)
⇒ Snijders, Pattison, Robins and Handcock (2006)

– Yuj and Yiv in Y are conditionally
independent given the rest of the network
if they could not produce a cycle in the network
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Figure 2: Partial conditional dependence when four-cycle is created

(see Figure 2). This partial conditional independence assumption states that

two possible edges with four distinct nodes are conditionally dependent when-

ever their existence in the graph would create a four-cycle. One substantive

interpretation is that the possibility of a four-cycle establishes the structural

basis for a “social setting” among four individuals (Pattison and Robins,

2002), and that the probability of a dyadic tie between two nodes (here, i
and v) is affected not just by the other ties of these nodes but also by other

ties within such a social setting, even if they do not directly involve i and v.

A four-cycle assumption is a natural extension of modeling based on tri-

angles (three-cycles), and was first used by Lazega and Pattison (1999) in

an examination of whether such larger cycles could be observed in an empir-

ical setting to a greater extent than could be accounted for by parameters

for configurations involving at most 3 nodes. Let us consider the four-cycle

assumption alongside the Markov dependence. Under the Markov assump-

tion, Yiv is conditionally dependent on each of Yiu, Yuv, Yij and Yjv, because

these edge indicators share a node. So if yiu = yjv = 1 (the precondition in

the four-cycle partial conditional dependence), then all five of these possible

edges can be mutually dependent, and hence the exponential model (4) could

contain a parameter corresponding to the count of such configurations. We

term this configuration, given by

yiv = yiu = yij = yuv = yjv = 1 ,

a two-triangle (see Figure 3). It represents the edge yij = 1 as part of the

triadic setting yij = yiv = yjv = 1 as well as the setting yij = yiu = yju = 1.

Motivated by this approach, we introduce here a generalization of triadic

structures in the form of graph configurations that we term k-triangles. For

a non-directed graph, a k-triangle with base (i, j) is defined by the presence

of a base edge i − j together with the presence of at least k other nodes

adjacent to both i and j. We denote a ‘side’ of a k-triangle as any edge that

is not the base. The integer k is called the order of the k-triangle Thus a

k-triangle is a combination of k individual triangles, each sharing the same

edge i− j. The concept of a k-triangle can be seen as a triadic analogue of a

15



This produces features on configurations of the form:

edgewise shared partner distribution: espk(y) =
proportion of edges between actors with exactly k shared partners
k = 0, 1, . . .

← →9

2) Other conditional independence statistics

⇒ Pattison and Robins (2002), Butts (2005)

⇒ Snijders, Pattison, Robins and Handcock (2004)

– edges in Y that are not tied are conditionally

independent given the rest of the network

• k-triangle distribution: tk(y) = proportion of k-triangles in the graph y.

• edgewise shared partner distribution:

pk(y) = propotion of nodes with exactly k edgewise shared partners in y.
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•
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k-triangle for k = 5, i.e., 5-triangle

⇐ Mark S. Handcock Statistical Modeling With ERGM →

Figure: The actors in the non-directed (i , j) edge have 5 shared partners

dyadwise shared partner distribution:
dspk(y) = proportion of dyads with exactly k shared partners
k = 0, 1, . . .



Structural Signatures

– identify social constructs or features
– based on intuitive notions or partial appeal to substantive theory

Clusters of edges are often transitive:
Recall triangle(y) is the number of triangles amongst triads

triangle(y) =
1�g
3

�
�

{i,j,k}∈(g
3)

yijyikyjk

A closely related quantity is the
proportion of triangles amongst two-stars

C (y) =
3×triangle(y)

two−star(y)

mean clustering coefficient

Figure:
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Structural Signatures

– identify social constructs or features
– based on intuitive notions or partial appeal to substantive theory

Clusters of edges are often transitive:
Recall triangle(y) is the number of triangles amongst triads

triangle(y) =
1�g
3

�
�

{i,j,k}∈(g
3)

yijyikyjk

A closely related quantity is the
proportion of triangles amongst two-stars

C (y) =
3×triangle(y)

two−star(y)

mean clustering coefficient
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Classes of statistics used for modeling

1) Nodal Markov statistics ⇒ Frank and Strauss (1986)

– motivated by notions of “symmetry” and “homogeneity”
– edges in Y that do not share an actor are

conditionally independent given the rest of the network
⇒ analogous to nearest neighbor ideas in spatial statistics

• Degree distribution: dk(y) = proportion of nodes of degree k in y.

• k-star distribution: sk(y) = proportion of k-stars in the graph y.

• triangles: t1(y) = proportion of triangles in the graph y.
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Statistical Inference for ERGM parameter η

Base inference on the loglikelihood function,

�(η) = η·g(yobs)− log κ(η)

κ(η) =
�

all possible

graphs z

exp{η·g(z)}



Approximating the loglikelihood

Suppose Y1,Y2, . . . ,Ym
i.i.d.∼ Pη0

(Y = y) for some η0.

Using the LOLN, the difference in log-likelihoods is

�(η)− �(η0) = log
κ(η0)

κ(η)

= log Eη0
(exp {(η0 − η)·g(Y )})

≈ log
1

M

M�

i=1

exp {(η0 − η)·(g(Yi )− g(yobs))}

≡ �̃(η)− �̃(η0).

Simulate Y1,Y2, . . . ,Ym using a MCMC (Metropolis-Hastings)
algorithm ⇒ Handcock (2002).

Approximate the MLE η̂ = argmaxη{�̃(η)− �̃(η0)} (MC-MLE)
⇒ Geyer and Thompson (1992)
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How can we tell if a model class is useful?

Many aspects:

Is the model-class itself able to represent a range of
realistic networks?

– model degeneracy: small range of graphs covered as
the parameters vary (Handcock 2003)

What are the properties of different methods of estimation?

– e.g, MLE, psuedolikelihood, Bayesian framework
– computational failure: estimates do not exist for

certain observable graphs

Can we assess the goodness-of-fit of models?

– appropriate measures and tests
(Besag 2000; Hunter, Goodreau, Handcock 2007)
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Model Degeneracy
idea: A random graph model is near degenerate if the model places
almost all its probability mass on a small number of graph configurations
in Y.
e.g. empty graph, full graph, an individual graph, no 2−stars,
mono-degree graphs

Example: The two-star model

P(Y = y) =
exp{η1edge(y) + η2two−star(y)}

c(η1, η2)
y ∈ Y

is near-degenerate for most values of η2 > 0

edge(y) =
�

i<j

yij two−star(y) =
�

i<j<k

yijyik
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← →8

Classes of statistics used for modeling

1) Nodal Markov statistics ⇒ Frank and Strauss (1986)

– motivated by notions of “symmetry” and “homogeneity”
– edges in Y that do not share an actor are

conditionally independent given the rest of the network
⇒ analogous to nearest neighbor ideas in spatial statistics

• Degree distribution: dk(y) = proportion of nodes of degree k in y.

• k-star distribution: sk(y) = proportion of k-stars in the graph y.

• triangles: t1(y) = proportion of triangles in the graph y.

• •

•

i j
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= transitive triad
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three-star

⇐ Mark S. Handcock Statistical Modeling With ERGM →



Illustrations of models within this model-class

village-level structure

– n = 50
– mean clustering coefficient = 15% – degree distribution: Yule with
scaling exponent 3.

larger-level structure

– n = 1000
– mean clustering coefficient = 15% – degree distribution: Yule with
scaling exponent 3.

Attribute mixing

– Two-sex populations
– mean clustering coefficient = 15% – degree distribution: Yule with
scaling exponent 3.
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Application to a Protein-Protein Interaction Network

By interact is meant that two amino acid chains were experimentally
identified to bind to each other.

The network is for E. Coli and is drawn from the “Database of
Interacting Proteins (DIP)” http://dip.doe-mbi.ucla.edu

For simplicity we focus on proteins that interact with themselves and
have at least one other interaction
– 108 proteins and 94 interactions.

http://dip.doe-mbi.ucla.edu


Figure: A protein - protein interaction network for E. Coli. The nodes
represent proteins and the ties indicate that the two proteins are known to
interact with each other.



Statistical Inference and Simulation

Simulate using a Metropolis-Hastings algorithm (Handcock 2002).

Here base inference on the likelihood function

For computational reasons, approximate the likelihood via Markov
Chain Monte Carlo (MCMC)

Use maximum likelihood estimates (Geyer and Thompson 1992)

Parameter est. s.e.
Scaling decay rate (φ) 3.034 0.3108
Correlation Coefficient (ν) 1.176 0.1457

Table: MCMC maximum likelihood parameter estimates for the protein-protein
interaction network.



Clustering and Social Networks

Three types of clustering in social networks:
transitivity of relationships
homophily of actors with similar observed characteristics
further clustering that could be due to:

homophily on unobserved attributes, or

“self-organization” into groups

Drawing conclusions about clustering of social actors is often a focus
of interest in social network analysis

But most methods don’t address it directly

Instead conclusions about clustering are often drawn by informally
eyeballing results from other methods

We present a statistical model of social networks that incorporates
clustering and allows formal inference about:

whether or not there is clustering (beyond transitivity)
if so, how many groups there are
who is in what group
uncertainty about group memberships
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Positing Latent Social Structure via Random Effects
model an underlying latent “social space” of actors

Latent space models: Hoff, Raftery and Handcock (2002)
Hoff (2003, 2004 ,...)

Latent class and space models: Tantrum, Handcock, Raftery (2004)
GLM and actor heterogeneity: Krivitsky et al (2009)

Hierarchical model for the network:
Actors i and j are an unknown distance apart in social space
Conditional on the distances the ties are independent

Let:

{δi} individual propensity of the actors to form ties
{γi} individual propensity of the actors to receive ties
{zi} be the positions of the actors in the social space R

k

{xi,j} denote observed characteristics that may be
dyad-specific and vector-valued

Specifically:

log odds(Yij = 1|zi , zj , xij , β) = βT
xij − |zi − zj | + δi + γj

where β denotes parameters to be estimated.
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Model-based Clustering of Social Networks

Model the latent positions as clustered into G groups:

z i
i.i.d.∼

G�

g=1

λgMVNd(µg , σ2

g Id)

Spherical covariance motivated by invariance

captures position, transitivity, homophily on attributes, and
clustering

captures individual propensities to form and receive ties

δi
i.i.d.∼ N(0, σ2

δ) i = 1, . . . , n,

γi
i.i.d.∼ N(0, σ2

γ) i = 1, . . . , n,
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Summary of latent cluster model

Model-based clustering of latent positions for social networks
provides a formal model of social networks that incorporates
clustering

It permits inference about:
whether there is clustering
how many groups there are
who is in what group
uncertainty about group memberships
the actors’ latent social positions

It gave reasonable results for two examples

Software: The R package latentnet, available on CRAN
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Frameworks for Statistical Analysis

Network Population
Specific Process

Fully
Observed Description Modeling

Data (Statistical)
Partially

Observed Design-Based Likelihood
Data Inference Inference



statnet capabilities
Required packages: ergm and network available on CRAN

ergm is a collection of functions to fit, simulate from, plot and
evaluate exponential-family random graph models.
The main functions within the ergm package are:

ergm, a function to fit exponential-family random graph models in
which the probability of a network is dependent upon a vector of
network statistics specified by the user
simulate, a function to simulate random networks using an ERGM
gof, a function to evaluate the goodness of fit of an ERGM to the
data.

ergm contains many other functions as well.

network is a package to create, store, modify and plot the data in
network objects.
The network object class, defined in the network package , can
represent a range of relational data types and it supports arbitrary
vertex / edge / network attributes.
Data stored as network objects can then be analyzed using all of the
component packages in the statnet suite.



statnet capabilities

Optional packages
The optional packages sna, degreenet, latentnet, and networksis are all
available on CRAN:

sna: A set of tools for traditional social network analysis .

degreenet: This package was developed for the degree distributions
of networks. It implements likelihood-based inference,
bootstrapping, and model selection, and it includes power-law
models such as the Yule and Waring as well as a range of alternative
models that have been proposed in the literature. .

latentnet: A package to fit and evaluate latent position and cluster
models for statistical networks.

networksis: A package to simulate bipartite networks with fixed
marginals through sequential importance sampling .



statnet capabilities
Additional optional packages are available on request, as described below.

dynamicnetwork: A set of tools for visualizing dynamically changing
networks .
netperm: A package for permutation Models for relational data . It
provides simulation and inference tools for exponential families of
permutation models on relational structures.
rSoNIA: Provides a set of methods to facilitate exporting data and
parameter settings and launching SoNIA, which stands for Social
Network Image Animator . SoNIA facilitates interactive browsing of
dynamic network data and exporting animations as a QuickTime
movies.

Additional capabilities

statnet can efficiently deal with large networks
(it handles data natively in edgelist form (within the backend).
In terms of data representations, it can generally support networks
on the order of 108 edges and/or nodes.
missing data on relations are handled
dynamic models has been developed and coded, but is not yet on
CRAN (Krivitsky 2009)



Statistical Challenges and Opportunities

massive and varied types of data
incorporation of these into the model is sometimes difficult

networks fundamentally relational
traditional notions based on independence flawed

noise in the relations and attributes

partially observed networks
almost always (non-ignorable) missing values
⇒ Handcock and Gile (2008)

often the boundary of the network is endogenous

measuring goodness-of-fit of network models
⇒ Hunter, Goodreau and Handcock (2007)

representing uncertainty in the inference

visualization of complex models and networks



In some disciplines the basic question of inference is ignored

understanding properties of sparse representations
e.g., concept of “model degeneracy” ⇒ Handcock (2003)
MLE, maximum pseudo-likelihood

improve estimation methods
technology transfer of approximate likelihood methods and ideas
developed in Genetics and Computer Science
Variational methods (Jordan et al 1998, ...)



Opportunities

Sciences should make better use of network sampling techniques
adaptive network designs (e.g., link tracing)
⇒ Handcock and Gile (2008)

respondent-driven sampling for hard-to-reach populations
⇒ Gile and Handcock (2008)

Dynamic and longitudinal models (harder and easier)

Most models condition on the number of nodes
models “generating” the number of nodes are important



Summary

Network representations intersect with most sciences

Sparse models are being used to capture structural properties

The models must depend on the scientific objective.

Some seemingly simple models are not so.

The inclusion of attributes is very important

– actor attributes
– dyad attributes e.g. homophily, race, location
– structural terms e.g. transitive homophily


