
News
The Newsletter of the R Project Volume 2/3, December 2002

Editorial
by Kurt Hornik

Time to say good-bye . . . with the new system of
rolling three-year periods of office for the members
of the Editorial Board, my term comes to an end on
Dec 31, with Doug Bates joining the board in 2003,
and Fritz Leisch taking over as Editor-in-Chief.

Having started R News from scratch together with
Fritz, I am of course very content with what we have
achieved thus far. And that does not change when
comparing our initial intentions, as stated in the ed-
itorial of the first (January 2001) issue of R News, to
the present state. Both quality and quantity of the
material published in the past two years confirm the
success of this newsletter in filling the gap between
mailing lists and scientific journals. (The first issue
also mentions the idea of having a regular column on
“Applications”. Guess that’s what’s usually called
“work in progress.”)

In serving its role as one of the key informa-
tion resources of the R community, R News of course
needs to do more that “just” provide news from
the most recent R releases and articles introducing
packages available from CRAN or other R package

repositories—there should be information on books
and events related to R, a programmer’s niche, a help
desk . . . and if possible, on a regular basis. Thus,
we are very happy that Uwe Ligges, known to many
as a key provider of answers on the r-help mailing
list, has agreed to edit a regular “Help Desk” col-
umn, starting in this issue with an article on “Au-
tomation of Mathematical Annotation in Plots”. Wel-
come aboard, Uwe!

Also in this issue, Angelo Canty continues the
series on primers for recommended packages with
“Resampling Methods in R: The boot Package”. In
“Mixing R and LATEX”, Fritz Leisch starts a mini-
series on Sweave, an exciting flexible framework for
mixing text with R code for automatic document gen-
eration. Steffen Lauritzen introduces a new, R-based
project on “gRaphical Modeling in R”. And of course,
there is much more . . .

Best wishes to everyone for 2003.

Kurt Hornik
Wirtschaftsuniversität Wien, Austria
Technische Universität Wien, Austria
Kurt.Hornik@R-project.org

Contents of this issue:

Editorial . 1
Resampling Methods in R: The boot Package . 2
Diagnostic Checking in Regression Relation-

ships . 7
Delayed Data Packages 11
geepack: Yet Another Package for Generalized

Estimating Equations 12
On Multiple Comparisons in R 14

Classification and Regression by randomForest 18
Some Strategies for Dealing with Genomic Data 22
Changes to the R-Tcl/Tk package 25
Sweave, Part I: Mixing R and LATEX 28
R Help Desk . 32
Changes in R . 34
Changes on CRAN 37
New Publications 38
gRaphical Models in R 39
Recent and Upcoming Events 39

mailto:Kurt.Hornik@R-project.org

Vol. 2/3, December 2002 2

Resampling Methods in R: The boot
Package
by Angelo J. Canty

Introduction

The bootstrap and related resampling methods are
statistical techniques which can be used in place
of standard approximations for statistical inference.
The basic methods are very easily implemented
but for the methods to gain widespread acceptance
among users it is necessary that they be implemented
in standard statistical packages. In this article I will
describe the boot package which implements many
variants of resampling methods in R. The package
was originally written as an S-Plus library released
in conjunction with the book by Davison and Hink-
ley (1997). Subsequently the library was ported to
R by Brian Ripley. The boot package described here
is distinct from the limited suite of bootstrap func-
tions which are now included in S-Plus. It is also dis-
tinct from the bootstrap package originally written
by R. Tibshirani for Efron and Tibshirani (1993).

In this paper I describe the main components of
the boot package and their use. I will not go into
any theoretical detail about the methods described.
It is strongly recommended, however, that the user
read Davison and Hinkley (1997) before using the
package. Initially I will describe the basic function
for bootstrapping i.i.d. data and analyzing the boot-
strap output. Then I will describe functions for sam-
pling randomly right-censored data and time series
data. The availability of the bootstrap for such non-
standard cases is one of the major advantages of the
boot package.

The main bootstrap function

The most important function in the package is the
boot function which implements resampling meth-
ods for i.i.d. data. The basic bootstrap in such cases
works by fitting a distribution function F̂ to the un-
known population distribution F. The Monte Carlo
bootstrap method then proceeds by taking R sam-
ples, of the same size as the original sample, from
F̂. In the parametric bootstrap F = Fψ is a member
of a class of distribution functions indexed by the pa-
rameter vectorψ and so F̂ = Fψ̂ where ψ̂ is some con-
sistent estimate of ψ. It is then the responsibility of
the user to supply (through the parameter ran.gen)
a function which takes the original data and returns
a sample from F̂. In the nonparametric case the es-
timate of F is the empirical distribution function. In
this case a sample from F̂ can be found by sampling

with replacement from the original data, X1, . . ., Xn.
In boot all R samples are found by constructing an
R× n matrix of random integers from 1:n. Indexing
the original data by each row of this matrix gives a
bootstrap sample.

Let us now suppose that interest is in some func-
tional θ = t(F). The plug-in estimate of this func-
tional is then t = t(F̂). Corresponding to a bootstrap
sample is a distribution function F̂∗. We can then use
t∗ = t(F̂∗) to estimate t. Under suitable regularity
conditions we can then approximate the distribution
of t −θ by the empirical distribution of t∗ − t. Thus
estimates of the bias and variance of the estimator T
are

b = t̄∗ − t, v =
1

R− 1

R

∑
r=1

(t∗r − t̄∗)2 (1)

Since boot is designed to be a general function
for the bootstrap, the user must supply a func-
tion (statistic) which calculates the required func-
tional. In the parametric bootstrap this is simply a
function of a dataset. In the non-parametric case,
statistic must be a function of the original dataset
and a second argument which is used to determine
a bootstrap sample. The simplest form that this sec-
ond argument can take is to be a vector of indices
such as a row of the index matrix constructed by
boot. An equivalent method for exchangeable data
is to supply the vector of frequencies of the original
data points in the bootstrap sample. Another alterna-
tive is to supply the probability weights correspond-
ing to F̂∗. For bootstrap samples such weights are
simply the frequencies divided by the sample size.
They have the advantage, however, that any set of n
weights which sum to 1 can be used. This allows
for numerical differentiation of the functional t(·)
at the datapoints which gives us the empirical influ-
ence values. Note that boot automatically normalizes
weights to sum to 1 prior to calling statistic. The
user must tell boot which second argument is being
expected by statistic, this is achieved by specify-
ing the stype parameter which can be "i", "f" or
"w".

The following is an example of using boot at its
most basic level. For many uses, this will be suffi-
cient to run the bootstrap. The code performs a non-
parametric bootstrap for the mean of the aircondit
data.

> mean.w <- function(x, w) sum(x*w)

> air.boot <- boot(data=aircondit$hours,

+ statistic=mean.w,

+ R=999, stype="w")

The use of this second argument may seem con-
fusing at first but it allows more flexibility in the

R News ISSN 1609-3631

Vol. 2/3, December 2002 3

types of data structures that we can bootstrap and
how bootstrapping is applied to the data. For ex-
ample, consider the case of bootstrapping for lin-
ear models. The data would generally be a matrix
or dataframe. The two methods that could be used
are to resample rows or resample residuals and then
reconstruct a response vector. The following code
shows how both of these can be achieved for the
catsM data set.

> data(catsM)

> cats.lm <-lm(Hwt~Bwt, data=catsM)

> cats1 <- catsM

> cats1$fit <- fitted(cats.lm)

> cats1$res <- resid(cats.lm)

> cats.fit <- function(data) {

+ mod <- lm(data$Hwt~data$Bwt)

+ c(coef(mod),

+ summary(mod)$coef[,2]^2) }

> case.fun <- function(d,i)

+ cats.fit(d[i,])

> model.fun <- function(d,i) {

+ d$Hwt <- d$fit+d$res[i]

+ cats.fit(d) }

> cats.case <- boot(cats1, case.fun,

+ R=999)

> cats.mod <- boot(cats1, model.fun,

+ R=999)

One advantage of the boot package is that it im-
plements many variants on the basic non-parametric
bootstrap method. One obvious extension is to
multi-sample problems. The user need only spec-
ify strata as a numeric vector or factor defining
the groups. This fits different empirical distribution
functions to each stratum and samples accordingly.
Another possibility is that we may want to resam-
ple from the data with unequal weights. This arises
in the context of bootstrap hypothesis testing and
in using importance sampling with the bootstrap as
suggested by Johns (1988) and Davison (1988). The
sampling probabilities are passed using the weights
argument to boot. Other types of resampling can
also be done and are specified using the sim argu-
ment. Two of these are attempts at more efficient
Monte Carlo sampling for the bootstrap; the bal-
anced bootstrap (Davison et al., 1986) and the anti-
thetic bootstrap (Hall, 1989). The final option is to re-
sample without replacement as required for permu-
tation tests.

Analysis of bootstrap output

The result of calling the boot function is that an ob-
ject having the class "boot" is returned. This object
contains most of the inputs to the boot function or
the default values of those not specified. It also con-
tains three additional components. The first of these
is t0 which is the result of evaluating the statistic
on the original dataset. The second, t, is the ma-
trix of bootstrap replicates. Each row of the matrix

corresponds to the value of the statistic applied to a
bootstrap dataset. Finally, there is a component seed
which contains the value of .Random.seed used to
start the Monte Carlo sampling. There are two main
reasons why this component is useful. The first is
the issue of reproducibility of the bootstrap. In re-
search it is often useful to apply different statistics to
the same set of bootstrap samples for comparisons.
Without the saved random seed this would not be
possible. The second reason is that there are situa-
tions in which it is important to be able to look at the
bootstrap samples themselves. This can be done by
constructing the matrix of bootstrap indices (or fre-
quencies). In an early version of the package that ma-
trix was stored but that required excessive storage.
By storing the random seed we can recreate the ma-
trix whenever required in very little time. The func-
tion boot.array does this.

The two main methods for boot objects are print
and plot methods. If the user prints a boot object
then a short summary of the bootstrap results are
given. Here are the results of case resampling the
catsM dataset.

> cats.case

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = cats1, statistic = case.fun,

R = 999)

Bootstrap Statistics :

original bias std. error

t1* -1.1841 0.029573 1.14684

t2* 4.3127 -0.010809 0.40831

t3* 0.9966 -0.012316 0.16043

t4* 0.1155 -0.001534 0.01769

In this example, the statistic returns a vector of length
4, the first two components are the coefficient esti-
mates and the second two are the estimated vari-
ances of the estimates from the usual linear model
theory. We note that the bootstrap standard errors
are 15–20% higher than the usual standard errors.

It is not safe to use the output of a bootstrap with-
out first looking at a graphical plot of the bootstrap
replicates. They are the first and most basic check
that the bootstrap has produced sensible results. One
common problem is that of discreteness of the boot-
strap distribution. If this is a problem it should be
fairly evident from the plots. The solution may be as
simple as increasing the number of replicates or there
may be some fundamental problem such as occurs in
the case of the sample maximum. In either case the
plots will alert the user that the results of this boot-
strap cannot be used for inference. The plots may
also show up bugs in the coding of the statistic which
were not previously evident. Because of the nature of
a bootstrap sample, it is possible to get datasets not
normally seen in practice (such as having many ties)
and the code which worked for the original sample

R News ISSN 1609-3631

Vol. 2/3, December 2002 4

Figure 1: Plots of the bootstrap output for the slope of the catsM dataset using case resampling. The command
used was plot(cats.case, index=2).

may not work for some bootstrap samples. Figure 1
shows the plots for the slope estimate of the catsM
dataset using case resampling.

A more sophisticated diagnostic tool is the
Jackknife-after-bootstrap plot suggested by Efron
(1992). The plot method may call the function
jack.after.boot to draw these. Users should note
that the plots produced by jack.after.boot are
very different from those produced by the S-Plus
function plot.jack.after.bootstrap. As a diag-
nostic, I think that the version I have used are more
informative.

Having examined the bootstrap output and de-
termined that it seems to be sensible the user can
proceed to use the output. The most common use
is to producing confidence intervals. The function
boot.ci can be used for this. This takes a boot-
strap output object and returns one or more types
of confidence interval for a scalar component of the
functional being estimated. There is an index ar-
gument to specify which component should be an-
alyzed. boot.ci can produce five different types of
bootstrap confidence interval. The bootstrap normal
interval assumes an asymptotic normal distribution
an used the bootstrap estimates of bias and variance
for the parameters of the distribution. The basic boot-
strap and bootstrap percentile intervals have less re-
strictive assumptions. All three intervals are asymp-
totically equivalent but the latter two tend to have
better small sample properties when the normal as-
sumption is questionable. This can be checked us-
ing the normal quantile plot produced by the plot
method. Two intervals that are asymptotically bet-
ter than these are the studentized and BCa intervals.
The price for this improvement is more calculation.

For the studentized bootstrap one needs a consistent
estimate of the variance of each bootstrap replicate.
Such variances can be found using asymptotic con-
siderations or through methods such as the jackknife
or non-parametric delta method (infinitesimal jack-
knife). Another alternative is to use a nested boot-
strap but this can rapidly become computationally
prohibitive. Whichever method is chosen, it must be
done for each bootstrap sample. The BCa interval
requires calculation of the empirical influence values
for the original sample only so the extra computation
is minimal but the statistic should be in weighted
form unless a closed form is readily available. See
Canty et al. (1996) for a simulation study comparing
the various intervals

Resampling censored data

In many practical settings, data is censored and so
the usual bootstrap is not applicable. The func-
tion censboot implements the bootstrap for random
right-censored data. Such data is typically com-
prised of the bivariate observations (Yi , Di) where

Yi = min(Xi , Ci) Di = I(Xi ≤ Ci)

where Xi ∼ F and Ci ∼ G independently and
I(A) is the indicator function of the event A. Non-
parametric estimates of F and G are given by the
Kaplan–Meier estimates F̂ and Ĝ, the latter being ob-
tained by replacing di by 1− di. We can then proceed
by sampling X∗

1 , . . . , X∗
n from F̂ and independently

sampling C∗
1 , . . . , C∗

n from Ĝ. (Y∗
i , D∗

i) can then be
found from (X∗

i , C∗
i) in the same way as for the origi-

nal data. Efron (1981) showed that this is identical to
resampling with replacement from the original pairs.

R News ISSN 1609-3631

Vol. 2/3, December 2002 5

An alternative approach is the conditional boot-
strap. This approach conditions the resampling on
the observed censoring pattern since this is, in effect,
an ancillary statistic. We therefore sample X∗

1 , . . . , X∗
n

from F̂ as before. If the ith observation is censored
then we set C∗

i = yi and if it is not censored we sam-
ple an observation from the estimated conditional
distribution of Ci given that Ci > yi. Having thus ob-
tained X∗

1 , . . . , X∗
n and C∗

1 , . . . , C∗
n we proceed as be-

fore. There is one technicality which must be ad-
dressed for this method to proceed. Suppose that the
maximum value of y1, . . . , yn, yk say, is a censored
observation. Then X∗

k < yk and C∗
k = yk so the boot-

strap observation will always be uncensored. Alter-
natively, if the the maximum value is uncensored, the
estimated conditional distribution does not exist. In
order to overcome these problems we add one ex-
tra point to the dataset which has an observed value
greater than max(y1, . . . , yn) and has the opposite
value of the censoring indicator to the maximum.

One other method for resampling from censored
data is the weird bootstrap introduced by Ander-
sen et al. (1993). This works by simulating from
the Nelson-Aalen estimate of the cumulative hazard
function.

The function censboot implements all of these
resampling schemes. The user simply specifies
the data (as a matrix or data.frame with at least
2 columns), the statistic (an R function taking the
dataset as its input), the number of resamples and
the Kaplan–Meier estimates of the survival and cen-
soring distributions as found using the function
survfit in the recommended package survival.

In practice there are usually covariates which af-
fect the survival distribution. The most common as-
sumption is that the survival distribution depends
on the covariates, x, through a Cox Proportional Haz-
ards Model (Cox, 1972).

1− F(y;β, x) = {1− F0(y)}exp(xTβ)

where β is a vector of unknown parameters and
1 − F0(y) is a baseline survivor function. The func-
tion coxph in the survival package fits such models.
For the bootstrap this does not cause a great compli-
cation. The only difference from before is the esti-
mated distribution from which failure times are gen-
erated. Earlier we mentioned that, without covari-
ates, sampling from the model was identical to sam-
pling pairs, this is no longer true in the case with co-
variates. Both methods are possible with censboot,
specifying sim="ordinary" will always sample cases
whereas sim="model" will resample from the Cox
model if appropriate and otherwise will resample
cases.

The following example looks at the ulcerated
cases in the melanoma dataset. The aim is to produce
a confidence interval for the exponent of the coeffi-
cient of tumor thickness in the proportional hazards
model. Note that it is necessary to ensure that the

censoring indicator is of the form specified above.

> data(melanoma)

> library(survival)

> mel <- melanoma[melanoma$ulcer==1,]

> mel$cens <- 1*(mel1$status==1)

> mel.cox <- coxph(Surv(time, cens)

+ ~thickness, data=mel)

> mel.surv <- survfit(mel1.cox)

> mel.cens <- survfit(Surv(time,1-cens)

+ ~1, data=mel)

> mel.fun <- function(d) {

+ coxph(Surv(time, cens)~thickness,

+ data=d)$coefficients }

> mel.boot <- censboot(mel, mel.fun,

+ R=999, sim="cond",

+ F.surv=mel.surv,

+ G.surv=mel.cens,

+ cox=mel.cox,

index=c(1,8))

> mel.boot

CONDITIONAL BOOTSTRAP FOR CENSORED DATA

Call:

censboot(data=mel, statistic=mel.fun,

R=999, F.surv=mel.surv,

G.surv=mel.cens, sim="cond",

cox=mel.cox, index=c(1,8))

Bootstrap Statistics :

original bias std. error

t1* 0.09971374 0.03175672 0.0456912

> boot.ci(mel.boot,

+ type=c("basic", "perc"),

+ h=exp)

BOOTSTRAP CONFIDENCE INTERVAL

CALCULATIONS

Based on 999 bootstrap replicates

CALL :

boot.ci(boot.out=mel.boot,

type=c("basic", "perc"), h=exp)

Intervals :

Level Basic Percentile

95% (0.952, 1.158) (1.052, 1.258)

Calculations and Intervals on

Transformed Scale

The usual interval from summary(mel.cox) is
(1.0205, 1.1962) which is narrower than the boot-
strap intervals suggesting that the asymptotic inter-
val may be undercovering.

Resampling time series
In applying the bootstrap to time series data it is
essential that the autocorrelations be properly ac-
counted for. The most common way of doing this is
to sample the observations in blocks rather than in-
dividually (Künsch, 1989). Thus if we choose a block
length l and we have n = ml for some integer m then
the resampled time series is constructed by putting
m blocks together. When m = n/l is not an integer

R News ISSN 1609-3631

Vol. 2/3, December 2002 6

the last block is shortened so that the resampled time
series is of the appropriate length. Blocks are usually
taken as overlapping so that there are n − l + 1 pos-
sible blocks. This can be increased to n by allowing
blocks to wrap around from the end to the start of the
time series. One problem with the block bootstrap is
that the resulting time series is not stationary. Politis
and Romano (1994) proposed the stationary bootstrap
to overcome this problem. In the stationary boot-
strap the block length is randomly generated with a
geometric distribution and the block start is selected
randomly from the integers {1, . . . , n}. Wrapping at
the end of the time series is necessary for this method
to work correctly. tsboot can do either of these meth-
ods by specifying sim="fixed" or sim="geom" re-
spectively. A simple call to tsboot includes the time
series, a function for the statistic (the first argument
of this function being the time series itself), the num-
ber of bootstrap replicates, the simulation type and
the (mean) block length .

> library(ts)

> data(lynx)

> lynx.fun <- function(tsb) {

+ fit <- ar(tsb, order.max=25)

+ c(fit$order, mean(tsb)) }

> tsboot(log(lynx), lynx.fun, R=999

+ sim="geom", l=20)

STATIONARY BOOTSTRAP FOR TIME SERIES

Average Block Length of 20

Call:

tsboot(tseries=log(lynx),

statistic=lynx.fun,

R=999, l=20, sim="geom")

Bootstrap Statistics :

original bias std. error

t1* 11.000000 -6.593593594 2.5400596

t2* 6.685933 -0.001994561 0.1163937

An alternative to the block bootstrap is to use
model based resampling. In this case a model is fit-
ted to the time series so that the errors are i.i.d. The
observed residuals are sampled as an i.i.d. series and
then a bootstrap time series is reconstructed. In con-
structing the bootstrap time series from the residu-
als, it is recommended to generate a long time se-
ries and then discard the initial burn-in stage. Since
the length of burn-in required is problem specific,
tsboot does not actually do the resampling. Instead
the user should give a function which will return the
bootstrap time series. This function should take three
arguments, the time series as supplied to tsboot, a
value n.sim which is the length of the time series re-
quired and the third argument containing any other
information needed by the random generation func-
tion such as coefficient estimates. When the random
generation function is called it will be passed the ar-
guments data, n.sim and ran.args passed to tsboot
or their defaults.

One problem with the model-based bootstrap is
that it is critically dependent on the correct model

being fitted to the data. Davison and Hinkley (1997)
suggest post-blackening as a compromise between the
block bootstrap and the model-based bootstrap. In
this method a simple model is fitted and the residuals
are found. These residuals are passed as the dataset
to tsboot and are resampled using the block (or sta-
tionary) bootstrap. To create the bootstrap time series
the resampled residuals should be put back through
the fitted model filter. The function ran.gen can be
used to do this.

> lynx1 <- log(lynx)

> lynx.ar <- ar(lynx1)

> lynx.res <- lynx.ar$resid

> lynx.res <- [!is.na(lynx.res)]

> lynx.res <- lynx.res-mean(lynx.res)

> lynx.ord <- c(lynx.ar$order,0,0)

> lynx.mod <- list(order=lynx.ord,

+ ar=lynx.ar$ar)

> lynx.args <- list(mean=mean(lynx1),

+ model=lynx.mod)

> lynx.black <- function(res, n.sim,

+ ran.args) {

+ m <- ran.args$mean

+ ts.mod <- ran.args$model

+ m+filter(res, ts.mod$ar,

+ method="recursive") }

> tsboot(lynx.res, lynx.fun, R=999,

+ l=20, sim="fixed", n.sim=114,

+ ran.gen=lynx.black,

+ ran.args=lynx.args)

POST-BLACKENED BLOCK BOOTSTRAP FOR

TIME SERIES

Fixed Block Length of 20

Call:

tsboot(tseries=lynx.res,

statistic=lynx.fun, R=999,

l=20, sim="fixed", n.sim=114,

ran.gen=lynx.black,

ran.args=lynx.args)

Bootstrap Statistics :

original bias std. error

t1* 0.000000e+00 9.732733 3.48395113

t2* -4.244178e-18 6.685819 0.09757974

A final method which is available for bootstrap-
ping of time series is phase scrambling. Unlike the
other methods described above, phase scrambling
works on the frequency domain. See Braun and
Kulperger (1997) for a discussion of the properties of
this method.

Further comments

In this article I have attempted to describe concisely
the main functions in the boot package for bootstrap-
ping. The package also has functions which imple-
ment saddlepoint approximations to the bootstrap as
described in Canty and Davison (1999). There are
also functions which do exponential tilting of the re-
sampling distribution and other forms of importance

R News ISSN 1609-3631

Vol. 2/3, December 2002 7

resampling in the bootstrap. These are quite special-
ized uses of the package and so the user is advised
to read the relevant sections of Davison and Hinkley
(1997) before using these functions.

Acknowledgments

I would like to thank A. C. Davison and V. Ventura
for their many helpful suggestions in the develop-
ment of this library. Thanks are also due to B. D. Rip-
ley for a great deal of help and for porting the code
to R. Any bugs in the code, however, are my respon-
sibility and should be reported to me in the first in-
stance.

Bibliography

Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding,
N. (1993), Statistical Models Based on Counting Pro-
cesses, New York: Springer. 5

Braun, W. J. and Kulperger, R. J. (1997), “Properties of
a Fourier bootstrap method for time series,” Com-
munications in Statistics — Theory and Methods, 26,
1329–1327. 6

Canty, A. J. and Davison, A. C. (1999), “Implementa-
tion of saddlepoint approximations in resampling
problems,” Statistics and Computing, 9, 9–15. 6

Canty, A. J., Davison, A. C., and Hinkley, D. V.
(1996), “Reliable confidence intervals. Discussion
of “Bootstrap confidence intervals”, by T. J. DiCi-
ccio and B. Efron,” Statistical Science, 11, 214–219.
4

Cox, D. R. (1972), “Regression Models and Life Ta-
bles” (with discussion), Journal of the Royal Statisti-
cal Society series B, 34, 187–220. 5

Davison, A. C. (1988), “Discussion of the Royal Sta-
tistical Society meeting on the bootstrap,” Journal
of the Royal Statistical Society series B, 50, 356–357. 3

Davison, A. C. and Hinkley, D. V. (1997), Bootstrap
Methods and Their Application, Cambridge: Cam-
bridge University Press. 2, 6, 7

Davison, A. C., Hinkley, D. V., and Schecht-
man, E. (1986), “Efficient bootstrap simulation,”
Biometrika, 73, 555–566. 3

Efron, B. (1981), “Censored data and the bootstrap,”
Journal of the American Statistical Association, 76,
312–319. 4

—— (1992), “Jackknife-after-bootstrap standard er-
rors and influence functions ” (with discussion),
Journal of the Royal Statistical Society series B, 54, 83–
127. 4

Efron, B. and Tibshirani, R. J. (1993), An Introduction
to the Bootstrap, New York: Chapman & Hall. 2

Hall, P. (1989), “On efficient bootstrap simulation,”
Biometrika, 76, 613–617. 3

Johns, M. V. (1988), “Importance sampling for boot-
strap confidence intervals,” Journal of the American
Statistical Association, 83, 709–714. 3

Künsch, H. R. (1989), “The jackknife and boot-
strap for general stationary observations,” Annals
of Statistics, 17, 1217–1241. 5

Politis, D. N. and Romano, J. P. (1994), “The station-
ary bootstrap,” Journal of the American Statistical As-
sociation, 89, 1303–1313. 6

Angelo J. Canty
McMaster University, Hamilton, Ont, Canada
cantya@mcmaster.ca

Diagnostic Checking in Regression
Relationships
by Achim Zeileis and Torsten Hothorn

Introduction

The classical linear regression model

yi = x>i β+ ui (i = 1, . . . , n) (1)

is still one of the most popular tools for data analy-
sis despite (or due to) its simple structure. Although
it is appropriate in many situations, there are many

pitfalls that might affect the quality of conclusions
drawn from fitted models or might even lead to un-
interpretable results. Some of these pitfalls that are
considered especially important in applied econo-
metrics are heteroskedasticity or serial correlation of
the error terms, structural changes in the regression
coefficients, nonlinearities, functional misspecifica-
tion or omitted variables. Therefore, a rich variety of
diagnostic tests for these situations have been devel-
oped in the econometrics community, a collection of
which has been implemented in the packages lmtest

R News ISSN 1609-3631

mailto:cantya@mcmaster.ca

Vol. 2/3, December 2002 8

and strucchange covering the problems mentioned
above.

These diagnostic tests are not only useful in
econometrics but also in many other fields where lin-
ear regression is used, which we will demonstrate
with an application from biostatistics. As Breiman
(2001) argues it is important to assess the goodness-
of-fit of data models, in particular not only using
omnibus tests but tests designed for a certain di-
rection of the alternative. These diagnostic checks
do not have to be seen as pure significance proce-
dures but also as an explorative tool to extract in-
formation about the structure of the data, especially
in connection with residual plots or other diagnostic
plots. As Brown et al. (1975) argue for the recursive
CUSUM test, these procedures can “be regarded as
yardsticks for the interpretation of data rather than
leading to hard and fast decisions.” Moreover, we
will always be able to reject the null-hypothesis pro-
vided we have enough data at hand. The question is
not whether the model is wrong (it always is!) but if
the irregularities are serious.

The package strucchange implements a variety
of procedures related to structural change of the re-
gression coefficients and was already introduced in
R news by Zeileis (2001) and described in more de-
tail in Zeileis et al. (2002). Therefore, we will fo-
cus on the package lmtest in the following. Most of
the tests and the datasets contained in the package
are taken from the book of Krämer and Sonnberger
(1986), which originally inspired us to write the pack-
age. Compared to the book, we implemented later
versions of some tests and modern flexible interfaces
for the procedures. Most of the tests are based on
the OLS residuals of a linear model, which is spec-
ified by a formula argument. Instead of a formula
a fitted model of class "lm" can also be supplied,
which should work if the data are either contained in
the object or still present in the workspace—however
this is not encouraged. The full references for the
tests can be found on the help pages of the respec-
tive function.

We present applications of the tests contained in
lmtest to two different data sets: the first is a macroe-
conomic time series from the U.S. analysed by Stock
and Watson (1996) and the second is data from a
study on measurments of fetal mandible length dis-
cussed by Royston and Altman (1994).

U.S. macroeconomic data

Stock and Watson (1996) investigate the stability of
76 monthly macroeconomic time series from 1959 to
1993, of which we choose the department of com-
merce commodity price index time series jocci to il-
lustrate the tests for heteroskedasticity and serial cor-
relation. The data is treated with the same methodol-
ogy as all other series considered by Stock and Wat-

son (1996): they were transformed suitably (here by
log first differences) and then an AR(6) model was
fitted and analysed. The transformed series is de-
noted dy and is depicted together with a residual plot
of the AR(6) model in Figure 1.

Not surprisingly, an autoregressive model is nec-
essary as the series itself contains serial correlation,
which can be shown by the Durbin-Watson test

R> data(jocci)

R> dwtest(dy ~ 1, data = jocci)

Durbin-Watson test

data: dy ~ 1

DW = 1.0581, p-value = < 2.2e-16

alternative hypothesis:

true autocorrelation is greater than 0

or the Breusch-Godfrey test which also leads to a
highly significant result. In the AR(6) model given
by

R> ar6.model <-

dy ~ dy1 + dy2 + dy3 + dy4 + dy5 + dy6

where the variables on the right hand side denote the
lagged variables, there is no remaining serial correla-
tion in the residuals:

R> bgtest(ar6.model, data = jocci)

Breusch-Godfrey test for

serial correlation of order 1

data: ar6.model

LM test = 0.2, df = 1, p-value = 0.6547

The Durbin-Watson test is biased in dynamic models
and should therefore not be applied.

The residual plot suggests that the variance of the
error component increases over time, which is em-
phasized by all three tests for heteroskedasticity im-
plemented in lmtest: the Breusch-Pagan test fits a
linear regression model to the residuals and rejects if
too much of the variance is explained by the auxiliary
explanatory variables, which are here the squared
lagged values:

R> var.model <-

~ I(dy1^2) + I(dy2^2) + I(dy3^2) +

I(dy4^2) + I(dy5^2) + I(dy6^2)

R> bptest(ar6.model, var.model, data = jocci)

studentized Breusch-Pagan test

data: ar6.model

BP = 22.3771, df = 6, p-value = 0.001034

The Goldfeld-Quandt test gqtest() and the
Harrison-McCabe test hmctest() also give highly
significant p values. Whereas the Breusch-Pagan
test and the Harrison-McCabe test do not assume
a particular timing of the change of variance, the
Goldfeld-Quandt test suffers from the same prob-
lem as the Chow test for a change of the regression

R News ISSN 1609-3631

Vol. 2/3, December 2002 9

Time

jo
cc

i (
lo

g
fir

st
 d

iff
er

en
ce

s)

1960 1970 1980 1990

−
0.

04
0.

00
0.

04

●
●
●

●

●

●
●

●
●

●

●

●

●
●●
●

●
●

●

●

●●
●●●

●
●

●

●

●

●

●●●●

●

●

●●
●

●●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●●

●

●

●

●
●
●

●
●

●
●

●

●

●

●
●●

●

●●
●●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●●
●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●●

●

●●
●●

●
●
●

●

●●
●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●
●

●

●●

●
●

●

●

●
●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●●

●●

●●●●
●
●

●●

●

●●
●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

1960 1970 1980 1990

−
0.

04
0.

00
0.

02
0.

04

Time

A
R

(6
)

re
si

du
al

s
Figure 1: The jocci series and AR(6) residual plot

coefficients: the breakpoint has to be known in ad-
vance. By default it is taken to be after 50% of the
observations, which leads to a significant result for
the present series.

The mandible data

Royston and Altman (1994) discuss a linear regres-
sion model for data taken from a study of fetal
mandible length by Chitty et al. (1993). The data
comprises measurements of mandible length (in
mm) and gestational age (in weeks) in 158 fetuses.
The data (after log transformation) is depicted in Fig-
ure 2 together with the fitted values of a linear model
length ~ age and a quadratic model length ~ age
+ I(age^2).

●

●

●●
●

●

●

●
●

●●

●

●●

●
●
●

●

●

●
●●
●

●●●
●

●
●●●

●
●

●

●

●
●
●●

●

●
●
●

●●
●●

●

●
●

●
●●●

●

●
●●
●
●
●●

●
●

●

●
●
●
●
●
●●

●●●
●
●●●●
●
●●●

●

●
●●

●

●●
●●
●

●

●

●

●

●●

●
●●

●

●

●
●

●

●
●

●
●●●
●●●●●
●
●

●
●●
●●●
●

●
●
●●

●

●

●
●●

●
●●
●●

●

●

●●
●
●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

2.6 2.8 3.0 3.2 3.4

2.
5

3.
0

3.
5

age

le
ng

th

Figure 2: The mandible data

Although by merely visually inspecting the raw
data or the residual plots in Figure 3 a quadratic
model seems to be more appropriate, we will first fit
a linear model for illustrating some tests for nonlin-
earity and misspecified functional form.

The suitable tests in lmtest are the Harvey-Collier
test, which is essentially a t test of the recursive resid-
uals (standardized one step prediction errors), and
the Rainbow test. Both try to detect nonlinearities

when the data is ordered with respect to a specific
variable.

R> data(Mandible)

R> mandible <- log(Mandible)

R> harvtest(length ~ age, order.by = ~ age,

data = mandible)

R> raintest(length ~ age, order.by = ~ age,

data = mandible)

Both lead to highly significant results, suggesting
that the model is not linear in age. Another appropri-
ate procedure is the RESET test, which tests whether
some auxiliary variables improve the fit significantly.
By default the second and third powers of the fitted
values are chosen:

R> reset(length ~ age, data = mandible)

RESET test

data: length ~ age

RESET = 26.1288, df1 = 2, df2 = 163,

p-value = 1.436e-10

In our situation it would also be natural to consider
powers of the regressor age as auxiliary variables

R> reset(length ~ age, power = 2,

type = "regressor", data = mandible)

RESET test

data: length ~ age

RESET = 52.5486, df1 = 1, df2 = 164,

p-value = 1.567e-11

which also gives a highly significant p value (higher
powers do not have a significant influence). These
results correspond to the better fit of the quadratic
model which can both be seen in Figure 2 and 3. Al-
though its residual plot does not look too suspicious
several tests are able to reveal irregularities in this
model as well. The Breusch-Pagan tests gives a p
value of 0.043 and the Rainbow test gives

R News ISSN 1609-3631

Vol. 2/3, December 2002 10

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2.6 2.8 3.0 3.2 3.4

−
0.

4
−

0.
2

0.
0

0.
2

age

re
si

du
al

s
(li

ne
ar

 m
od

el
)

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●●

●

●

●●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2.6 2.8 3.0 3.2 3.4

−
0.

2
0.

0
0.

1
0.

2

age

re
si

du
al

s
(q

ua
dr

at
ic

 m
od

el
)

Figure 3: Residual plots for mandible models

R> raintest(length ~ age + I(age^2),

order.by = ~ age, data = mandible)

Rainbow test

data: length ~ age + I(age^2)

Rain = 1.5818, df1 = 84, df2 = 80,

p-value = 0.01995

and finally an supF test from the strucchange pack-
age would also reject the null hypothesis of stability
at 10% level (p = 0.064) in favour of a breakpoint
after about 90% of the observations. All three tests
probably reflect that there is more variability in the
edges (especially the right one) than in the middle
which the model does not describe sufficiently.

Conclusions

We illustrated the usefulness of a collection of di-
agnostic tests for various situations of deviations
from the assumptions of the classical linear regres-
sion model. We chose two fairly simple data sets—an
econometric and a biometric application—to demon-
strate how the tests work, but they are also partic-
ularly helpful to detect irregularities in regressions
with a larger number of regressors.

Bibliography

L. Breiman. Statistical modeling: The two cultures.
Statistical Science, 16:199–231, 2001. 8

R. L. Brown, J. Durbin, and J. M. Evans. Techniques
for testing the constancy of regression relation-
ships over time. Journal of the Royal Statistical So-
ciety, B 37:149–163, 1975. 8

L. S. Chitty, S. Campbell, and D. G. Altman. Measure-
ment of the fetal mandible – feasibility and con-

struction of a centile chart. Prenatal Diagnosis, 13:
749–756, 1993. 9

W. Krämer and H. Sonnberger. The Linear Regres-
sion Model Under Test. Physica-Verlag, Heidelberg,
1986. 8

P. Royston and D. G. Altman. Regression using frac-
tional polynomials of continuous covariates: Parsi-
monious parametric modelling. Applied Statistics,
43:429–453, 1994. 8, 9

J. H. Stock and M. W. Watson. Evidence on structural
instability in macroeconomic time series relations.
Journal of Business & Economic Statistics, 14:11–30,
1996. 8

A. Zeileis. strucchange: Testing for structural
change in linear regression relationships. R News,
1(3):8–11, September 2001. URL http://cran.
R-project.org/doc/Rnews/. 8

A. Zeileis, F. Leisch, K. Hornik, and C. Kleiber.
strucchange: An R package for testing for struc-
tural change in linear regression models. Journal
of Statistical Software, 7(2):1–38, 2002. URL http:
//www.jstatsoft.org/v07/i02/. 8

Achim Zeileis
Institut für Statistik & Wahrscheinlichkeitstheorie,
Technische Universität Wien, Austria
zeileis@ci.tuwien.ac.at

Torsten Hothorn
Institut für Medizininformatik, Biometrie und Epidemi-
ologie
Friedrich-Alexander-Universität Erlangen-Nürnberg,
Germany
Torsten.Hothorn@rzmail.uni-erlangen.de

R News ISSN 1609-3631

http://cran.R-project.org/doc/Rnews/
http://cran.R-project.org/doc/Rnews/
http://www.jstatsoft.org/v07/i02/
http://www.jstatsoft.org/v07/i02/
mailto:zeileis@ci.tuwien.ac.at
mailto:Torsten.Hothorn@rzmail.uni-erlangen.de

Vol. 2/3, December 2002 11

Delayed Data Packages
The g.data package

by David E. Brahm

Data storage in R and S-Plus

The biggest shock for me in transitioning from S-Plus
to R was the different data storage model. In S-Plus,
each position in the search path corresponds to a di-
rectory (“chapter”) on your disk, and every object is
written immediately to disk upon creation, as a file of
the same name as the object (under Unix). In R, po-
sitions on the search path are “environments”, and
objects live—and die—in memory unless you save
them explicitly. The purpose of the g.data package
is to provide data storage in R in a way that combines
the best features of both models, including:

• Storing objects in individual files, without mul-
tiple save’s

• Viewing the contents of an attached directory
without pulling them all into memory

• Loading objects into memory as they’re
needed, without multiple load’s.

For example, I store twenty large (date × stock)
matrices m1, . . . , m20 in a “delayed data package”
(DDP) called hist. They belong together, because
they cover the same date and stock ranges, so I can
calculate e.g. mnew <- m1 * m2. But in a given ses-
sion, I may only care about two of the twenty matri-
ces, so I don’t want to load all twenty into memory.
I also don’t want to have to type a load command
for every matrix I need. When I’m done, I may want
to save mnew into the DDP for future use. And then
I want to detach that DDP and attach another (with
different dates and stocks), to perform the same op-
erations there.

Here’s how that looks with the g.data package
(assuming the DDP already exists):

> require(g.data)

> g.data.attach("/rdata/hist")

> assign("mnew", m1*m2, 2)

> g.data.save()

> detach(2)

More examples

Here’s an example that creates a database from
scratch.

> g.data.attach("/tmp/newdir", warn=FALSE)

> assign("x1", matrix(1, 1000, 1000), 2)

> assign("x2", matrix(2, 1000, 1000), 2)

> g.data.save()

> detach(2)

In the next example, the first timed command
takes a while, because x1 is being loaded. The sec-
ond is quick, because now x1 is in memory.

> g.data.attach("/tmp/newdir")

> system.time(print(dim(x1)))

[1] 1000 1000

[1] 1.70 0.01 1.90 0.00 0.00

> system.time(print(dim(x1)))

[1] 1000 1000

[1] 0 0 0 0 0

Suppose you now type

> assign("x3", x2*10, 2)

and go look at the contents of ‘/tmp/newdir’. Ob-
jects x1 and x2 are written there (under subdirectory
‘data’, with names ‘x1.RData’ and ‘x2.RData’), but x3
is not. ‘x3.RData’ only gets written when you type
g.data.save(). Unlike S-Plus, you have the option
not to save the changes you’ve made, just by not call-
ing g.data.save.

With no arguments, g.data.save (re-)writes all
objects in position 2 to disk. Both g.data.attach
and g.data.save take an optional argument pos (de-
faulting to pos=2), so you can work with multi-
ple DDP’s in different positions on the search path.
g.data.save also takes an argument obj to (re-)write
only specified objects, an argument rm.obj to re-
move objects, and an argument dir which can be
used e.g. in this context:

> y <- list(a=1, b=11:15, c=21:29)

> attach(y, pos=4)

> g.data.save(dir="/tmp/mylist", pos=4)

Finally, the command g.data.get allows you to
retrieve individual objects stored in a DDP without
attaching the DDP:

> bcopy <- g.data.get("b", "/tmp/mylist")

> bcopy

[1] 11 12 13 14 15

Under the hood

g.data.save creates (or writes to) a DDP directory
with subdirectories ‘R’ and ‘data’, so it looks to R
much like a typical package. g.data.attach is really
just a snippet of library. The data files in subdi-
rectory ‘data’ are created with save, as you’d expect.
The code under subdirectory ‘R’ consists of lines like:

x1 <- delay(g.data.load("x1", "newdir"))

R News ISSN 1609-3631

Vol. 2/3, December 2002 12

so when you first g.data.attach the directory, the
object loaded into memory as x1 is a “promise ob-
ject” (which is very small). When you actually use
x1 (e.g., to query its dimensions), the promise is ful-
filled, and g.data.load does two things:

1. It loads the actual large object, and

2. It returns that object for the query.

Henceforth, the object in memory as x1 is the real
(large) object.

David E. Brahm
Geode Capital Management
brahm@alum.mit.edu

geepack: Yet Another Package for
Generalized Estimating Equations
Modeling Both Mean and Association of Multivari-
ate Responses

by Jun Yan

Introduction

geepack is designed to provide an inferential basis
for both the association structure and the mean struc-
ture in multivariate analysis, using the Generalized
Estimating Equations (GEE) approach.

Consider a sample of K independent clusters
yT

i = (yi1, · · · , yini), i = 1, · · · , K, of ni-variate re-
sponses. In a generalized linear model setup, the
variance of yit, Vit, can be factored as

var(yit) = φitv(µit),

where φit is the scale parameter, v is the variance
function v(µit), where µit = E(yit). To model the as-
sociation, we decompose cov(yi) into two parts, the
variance and the correlation,

cov(yi) = V1/2RV1/2,

where V is the diagonal matrix of Vit, and R is the
correlation matrix of yi.

Let X1i , X2i and X3i be the covariate matrices for
the mean, the scale, and the correlation of the re-
sponse yi, with dimensions ni × p, ni × r, and ni(ni −
1)/2× q, respectively. The models are

g1(µi) = X1iβ, (1)
g2(φi) = X2iγ, (2)
g3(ρi) = X3iα, (3)

where gi , i = 1, 2, 3, are known link functions, µi is a
ni × 1 vector containing E(yi|X1i),φi is a ni × 1 vector
containing var(yi|X2i)/vit, where vit = v(µit) is the
variance function, and ρi is a ni(ni − 1)/2× 1 vector
containing cor(yis, yit|X3i). β, γ, andα are the mean,
the scale, and the correlation parameters of dimen-
sion p× 1, r× 1, and q× 1, respectively.

The mean link has been well studied. The scale
link is often taken to be log, while it is natural to let
the correlation link be “logistic” (i.e., Fisher’s z trans-
formation), in which case the inverse link function is
the hyperbolic tangent, that is,

ρits = cor(yis, yit|X3i) =
exp(X3i(s,t)α)− 1
exp(X3i(s,t)α) + 1

, (4)

where X3i(s,t) is the row in matrix X3i corresponding
to the correlation of yis and yit. These links ensure
that the scale is positive and that the correlation is in
(−1, 1). The scale model is useful in situations where
parameters are needed for covariate effects either on
over- or under-dispersion or on heteroscedasticity.

A convenient set of estimating equations for the
three-link model is

U1(β,γ,α) =
K

∑
i=1

DT
1iV

−1
1i (yi −µi) = 0 (5)

U2(β,γ,α) =
K

∑
i=1

DT
2iV

−1
2i (si −φi) = 0 (6)

U3(β,γ,α) =
K

∑
i=1

DT
3iV

−1
3i (zi − ρi) = 0 (7)

where si is the ni × 1 vector of sit = (yit −µit)2/vit, zi
is the ni(ni − 1)/2× 1 vector of zits = (yit −µit)(yis −
µis)/

√
φitvitφisvis, D1i = ∂µi/∂βT , D2i = ∂φi/∂γT ,

D3i = ∂ρi/∂αT , and V1i, V2i and V3i are the condi-
tional working covariance matrices of yi, si, and zi.

The matrix V1i generally contains scale parame-
ters γ and correlation parameters α. The matrices
V2i and V3i may contain other estimated quantities
which characterize the third and fourth order mo-
ments. In practice, in order to avoid specification
of higher order moments, estimation of higher order
nuisance parameters, and convergence problems, V2i
may be chosen to be a diagonal matrix whose di-
agonal elements are 2φit, following the indepen-
dence Gaussian working matrix in Prentice and Zhao
(1991), and V3i may be an identity matrix (Ziegler
et al., 1998, p.129), at the cost of potential efficiency

R News ISSN 1609-3631

mailto:brahm@alum.mit.edu

Vol. 2/3, December 2002 13

loss. These simplifications are implemented in geep-
ack.

Features

• Allows different covariates in separate models
for the mean, scale, and correlation via various
link functions.

• Provides “sandwich” and jackknife variance
estimators for all the parameter estimates, ex-
tending Ziegler et al. (2000).

• Handles clustered ordinal data, allowing co-
variates in the odds ratio model, using the
method in Heagerty and Zeger (1996).

An example: Epileptic seizures

As an illustration, the epileptic seizure data (Thall
and Vail, 1990) is analyzed. The dataset arose from
a clinical trial of 59 epileptic patients, randomized
to receive either the anti-epileptic drug pragabide
or a placebo, as an adjuvant to standard chemother-
apy. There are four 2-week interval seizure counts for
each patient. The covariates are treatment, age, and
baseline counts on a 8-week interval before the trial.
We first reshape the data into a “long” format for lon-
gitudinal data, and create new covariates identical to
those used in Thall and Vail (1990),

> data(seizure)

> seiz.l <-

+ reshape(seizure,

+ varying = list(c("y1", "y2",

+ "y3", "y4")),

+ v.names = "y", direction = "long")

> seiz.l <-

+ seiz.l[order(seiz.l$id, seiz.l$time),]

> seiz.l$lbase <- log(seiz.l$base / 4)

> seiz.l$lage <- log(seiz.l$age)

> seiz.l$v4 <- ifelse(seiz.l$time == 4, 1, 0)

Next we use the function geese to fit a GEE model
for the seizure counts, with the same mean model as
that in Thall and Vail (1990). We treat time as a factor
and include it in the scale model using a log link. To
illustrate the usage of the correlation model, we use
an ar1 correlation structure (together with the scale
model, this specifies a heterogeneous AR(1) covari-
ance structure), and fisherz link, and include pa-
tient age in the correlation model. The models for the
mean, scale, and correlation are fit using GEE and the
results are summarized in the following.

> z <- model.matrix(~ age, data = seizure)

> m1 <- geese(y ~ lbase*trt + lage + v4,

+ sformula = ~ as.factor(time) - 1,

+ id = id, data = seiz.l,

+ corstr = "ar1", family = poisson,

+ zcor = z, cor.link = "fisherz",

+ sca.link = "log")

> summary(m1)

Mean Model:

Mean Link: log

Variance to Mean Relation: poisson

Coefficients:

estimate san.se wald p

(Intercept) -2.544 0.8291 9.41 0.002154

lbase 0.964 0.0898 115.22 0.000000

trt -1.491 0.4557 10.71 0.001068

lage 0.826 0.2387 11.98 0.000539

v4 -0.143 0.0721 3.95 0.046850

lbase:trt 0.601 0.1864 10.38 0.001272

Scale Model:

Scale Link: log

Estimated Scale Parameters:

estimate san.se wald p

as.factor(time)1 1.240 0.255 23.6 1.18e-06

as.factor(time)2 1.544 0.366 17.8 2.49e-05

as.factor(time)3 2.019 0.498 16.5 4.98e-05

as.factor(time)4 0.864 0.204 18.0 2.24e-05

Correlation Model:

Correlation Structure: ar1

Correlation Link: fisherz

Estimated Correlation Parameters:

estimate san.se wald p

(Intercept) 2.558 0.7064 13.11 0.000294

age -0.047 0.0229 4.21 0.040192

Returned Error Value: 0

Number of clusters: 59 Maximum cluster size: 4

Since there is one possible outlier in the dataset
(Diggle et al., 1994, pp.166–168), it might be inter-
esting to compare the “sandwich” variance estimate
with the jackknife variance estimate. Jackknife vari-
ance estimate may be obtained by setting jack, j1s,
or fij to TRUE, requesting approximated, one-step,
and fully iterated jackknife variance estimate, respec-
tively; see Ziegler et al. (2000).

> m2 <- geese(y ~ lbase*trt + lage + v4,

+ sformula = ~ as.factor(time) - 1,

+ id = id, data = seiz.l,

+ corstr = "ar1", family = poisson,

+ zcor = z, cor.link = "fisherz",

+ sca.link = "log", jack = TRUE,

+ j1s = TRUE, fij = TRUE)

Summarizing the fitted object (not shown here) sug-
gests that there is noticeable difference between the
sandwich and the jackknife variance estimator for
the covariate effect of trt and lbase:trt. If the jack-
knife variance estimators were used, these two ef-
fects would become insignificant at level 0.05.

R News ISSN 1609-3631

Vol. 2/3, December 2002 14

Future developments

Different components within a cluster may have dif-
ferent link functions. For example, the data analyzed
by Prentice and Zhao (1991) have two responses for
each patient. One is continuous and its mean is mod-
eled with the identity link, and the other is binary
and its mean is modeled with the logit link. The C++
code for geepack was designed to permit this situa-
tion. An R interface will be developed for this exten-
sion.

Acknowledgments

The C++ code in geepack is based on the Template
Numerical Toolkit (TNT) version 0.94, developed at
the National Institute of Standards and Technology
(NIST). At the time of writing, version 1.1 is avail-
able at http://math.nist.gov/tnt/.

I am grateful to Douglas Bates and Jason Fine for
encouragement, discussions, and comments.

Bibliography

Peter J. Diggle, Kung-Yee Liang, and Scott L. Zeger.
Analysis of longitudinal data (ISBN 0198522843).
Clarendon Press [Oxford University Press], 1994.
ISBN 0198522843. 13

Patrick J. Heagerty and Scott L. Zeger. Marginal
regression models for clustered ordinal measure-
ments. Journal of the American Statistical Association,
91:1024–1036, 1996. 13

Ross L. Prentice and Lue Ping Zhao. Estimating
equations for parameters in means and covari-
ances of multivariate discrete and continuous re-
sponses. Biometrics, 47:825–839, 1991. 12, 14

Peter F. Thall and Stephen C. Vail. Some covariance
models for longitudinal count data with overdis-
persion. Biometrics, 46:657–671, 1990. 13

Andreas Ziegler, Christian Kastner, and Maria Blet-
tner. The generalised estimating equations: An an-
notated bibliography. Biometrical Journal, 40:115–
139, 1998. 12

Andreas Ziegler, Christian Kastner, Daniel Brunner,
and Maria Blettner. Familial associations of lipid
profiles: A generalized estimating equations ap-
proach. Statistics in Medicine, 19(24):3345–3357,
2000. 13

Jun Yan
University of Wisconsin–Madison, U.S.A.
jyan@stat.wisc.edu

On Multiple Comparisons in R
by Frank Bretz, Torsten Hothorn and Peter Westfall

Description

The multiplicity problem arises when several infer-
ences are considered simultaneously as a group. If
each inference has a 5% error rate, then the error
rate over the entire group can be much higher than
5%. This article shows practical examples of multi-
ple comparisons procedures that control the error of
making any incorrect inference.

The multcomp package for the R statistical en-
vironment allows for multiple comparisons of pa-
rameters whose estimates are generally correlated,
including comparisons of k groups in general lin-
ear models. The package has many common mul-
tiple comparison procedures “hard-coded”, includ-
ing Dunnett, Tukey, sequential pairwise contrasts,
comparisons with the average, changepoint analy-
sis, Williams’, Marcus’, McDermott’s, and tetrad con-
trasts. In addition, a free input interface for the con-
trast matrix allows for more general comparisons.

The comparisons themselves are not restricted to

balanced or simple designs. Instead, the package is
designed to provide general multiple comparisons,
thus allowing for covariates, nested effects, corre-
lated means, likelihood-based estimates, and miss-
ing values. For the homoscedastic normal linear
models, the functions in the package account for the
correlations between test statistics by using the ex-
act multivariate t-distribution. The resulting proce-
dures are therefore more powerful than the Bonfer-
roni and Holm methods; adjusted p-values for these
methods are reported for reference. For more general
models, the program accounts for correlations using
the asymptotic multivariate normal distribution; ex-
amples include multiple comparisons based on rank
transformations, logistic regression, GEEs, and pro-
portional hazards models. In the asymptotic case,
the user must supply the estimates, the asymptotic
covariance matrix, and the contrast matrix.

Basically, the package provides two functions.
The first, simint, computes confidence intervals
for the common single-step procedures. This ap-
proach is uniformly improved by the second func-
tion (simtest), which utilizes logical constraints and
is closely related to closed testing. However, no con-

R News ISSN 1609-3631

http://math.nist.gov/tnt/
mailto:jyan@stat.wisc.edu

Vol. 2/3, December 2002 15

fidence intervals are available for the simtest func-
tion. For testing and validation purposes, some ex-
amples from Westfall et al. (1999) are included in the
package.

Details

Assume the general linear model

Y = Xβ +ε,

where Y is the n× 1 observation vector, X is the fixed
and known n × p design matrix, β is the fixed and
unknown p × 1 parameter vector and ε is the ran-
dom, unobservable n× 1 error vector, distributed as
Nn(0,σ2In). We assume the usual estimates

β̂ = (XtX)−XtY

and
σ̂2 = (Y− Xβ̂)t(Y− Xβ̂)/ν,

where ν = n − rank(X). Our focus is on multiple
comparisons for parameters of the general form ctβ.
Its variance is given through

Var(ctβ̂) = σ̂2ct(XtX)−c.

In simultaneous inferences we are faced with a
given family of estimable parameters {ct

1β, . . . , ct
kβ}.

We thus use the pivotal test statistics

Ti =
ct

iβ̂− ct
iβ

σ̂
√

ct
i(XtX)−ci

.

For a general account on multiple comparison pro-
cedures we refer to Hochberg and Tamhane (1987).
The joint distribution of {T1, . . . , Tk} is multivariate
t with degrees of freedom ν and correlation matrix
R = DC(XtX)−CtD, where Ct = (c1, . . . , ck) and
D = diag(ct

i(XtX)−ci)−1/2. In the asymptotic case
ν → ∞ or if σ is known, the corresponding limiting
multivariate normal distribution holds. The numer-
ical evaluation of the multivariate t and normal dis-
tribution is available with the R package mvtnorm,
see Hothorn et al. (2001).

The function simint provides simultaneous con-
fidence intervals for the estimable functions ct

iβ in
the (two-sided) form

[ct
iβ̂− c1−ασ̂

√
ct

i(XtX)−ci ;

ct
iβ̂ + c1−ασ̂

√
ct

i(XtX)−ci],

where c1−α is the critical value at level 1 −α, as de-
rived under the distributional assumptions above. If
lower or upper tailed tests are used, the correspond-
ing interval bounds are set to −∞ and ∞, respec-
tively.

The second function simtest provides more
powerful test decisions than simint yet it does not
provide simultaneous confidence intervals. It uses
the stepwise methods of Westfall (1997), which take
the logical constraints between the hypotheses into
account and which are closely related to the closed
testing principle of Marcus et al. (1976). In addi-
tion, the stochastic dependencies of the test statistics
are incorporated, thus allowing imbalance, covari-
ates and more general models. Again, any collection
of linear combinations of the estimable parameters is
allowed, not just pairwise comparisons. We refer to
Westfall (1997) for the algebraic and algorithmic de-
tails.

Example

We illustrate some of the capabilities of the mult-
comp package using the recovery dataset. Three
different heating blankets b1, b2, b3 for post-surgery
treatment are compared to a standard blanket b0. The
variable of interest in this simple one-way layout was
recovery time in minutes of patients allocated ran-
domly to one of the four treatments. The standard
approach for comparing several treatments against
a control is the many-to-one test of Dunnett (1955).
The Dunnett test is one of the “hard-coded” proce-
dures available for one-factor models in multcomp.
To obtain simultaneous confidence intervals for the
comparisons βi −β1 on simply calls:

>library(multcomp)

Loading required package: mvtnorm

>data(recovery)

>Dcirec <- simint(minutes ~ blanket,

+ data = recovery, conf.level = 0.9,

+ alternative = "less")

>print(Dcirec)

Simultaneous confidence

intervals: Dunnett contrasts

90 % confidence intervals

Estimate lower CI

blanketb1-blanketb0 -2.133 -Inf

blanketb2-blanketb0 -7.467 -Inf

blanketb3-blanketb0 -1.667 -Inf

upper CI

blanketb1-blanketb0 0.822

blanketb2-blanketb0 -4.511

blanketb3-blanketb0 -0.036

Thus, blankets b2 and b3 lead to significant lower re-
covery times in comparison to the standard b0, since
the respective upper confidence bounds are less than
0. In particular, the output above indicates that at
the designated confidence level of 90% the average

R News ISSN 1609-3631

Vol. 2/3, December 2002 16

recovery time for b2 is more than 7 minutes shorter
than it is for b0.

A second way to obtain the same results is to de-
fine the contrast matrix C explicitly:

>C <- matrix(c(0, 0, 0, -1, -1,

+ -1, 1, 0, 0, 0, 1, 0, 0, 0,

+ 1), nc = 5)

>rownames(C) <- paste("C", 1:nrow(C),

+ sep = "")

>Ccirec <- simint(minutes ~ blanket,

+ data = recovery, conf.level = 0.9,

+ alternative = "less", eps = 1e-04,

+ cmatrix = C)

>print(Ccirec)

Simultaneous confidence

intervals: user-defined contrasts

90 % confidence intervals

Estimate lower CI upper CI

C1 -2.1333 -Inf 0.8225

C2 -7.4667 -Inf -4.5108

C3 -1.6667 -Inf -0.0360

The first column of C stands for the intercept β0,
the remaining columns are reserved for the 4 lev-
els β1, . . . ,β4 of the single factor. Each row defines
a particular linear combination ct

iβ. Note that the
eps argument specifies the accuracy of the numeri-
cal results (see pmvt in package mvtnorm for more de-
tails). This is the reason why the confidence bounds
are now printed with four significant digits instead
of the former three digits.

More detailed output is available by using the
summary method:

>summary(Ccirec)

Simultaneous 90% confidence

intervals: user-defined contrasts

user-defined contrasts for factor blanket

Contrast matrix:

[,1] [,2] [,3] [,4] [,5]

C1 0 -1 1 0 0

C2 0 -1 0 1 0

C3 0 -1 0 0 1

Absolute Error Tolerance: 1e-04

90 % quantile: 1.8431

Coefficients:

Estimate low CI, upp CI t value

C1 -2.1333 -Inf 0.8225 -1.3302

C2 -7.4667 -Inf -4.5108 -4.6556

C3 -1.6667 -Inf -0.0360 -1.8837

Std.Err. p raw p Bonf p adj

C1 1.6038 0.0958 0.2874 0.2412

C2 1.6038 0.0000 0.0001 0.0001

C3 0.8848 0.0337 0.1012 0.0924

This output prints the user defined contrast matrix
C and the quantile c1−α . In addition, simultaneous
confidence intervals, the estimates ct

iβ̂ and their stan-
dard errors are given as well as the raw p-values
(computed from the marginal t distributions) and
multiplicity adjusted p-values (using either the mul-
tivariate t distribution or the Bonferroni correction).
The simultaneous confidence intervals and the ad-
justed p-values based on the multivariate t distribu-
tion are compatible in the sense that if padj < 0.05,
then the associated confidence interval does not con-
tain the 0.

A more powerful approach is available using the
simtest function. The call remains essentially the
same, also no simultaneous confidence intervals are
available:

>Ctrec <- simtest(minutes ~ blanket,

+ data = recovery, conf.level = 0.9,

+ alternative = "less", eps = 1e-04,

+ cmatrix = C)

>summary(Ctrec)

Simultaneous tests: user-defined contrasts

user-defined contrasts for factor blanket

Contrast matrix:

[,1] [,2] [,3] [,4] [,5]

C1 0 -1 1 0 0

C2 0 -1 0 1 0

C3 0 -1 0 0 1

Absolute Error Tolerance: 1e-04

Coefficients:

Estimate t value Std.Err. p raw

C2 -7.4667 -4.6556 1.6038 0.0000

C3 -1.6667 -1.8837 1.6038 0.0337

C1 -2.1333 -1.3302 0.8848 0.0958

p Bonf p adj

C2 0.0001 0.0001

C3 0.0675 0.0640

C1 0.0958 0.0958

It transpires that the adjusted p-values are in-
deed uniformly lower in comparison to those from
simint.

A final example call illustrates the use of the
multcomp package, if the estimates β̂i and their co-
variances are passed by hand. In such cases, the core
functions csimint and csimtest have to be called
without using the sim{int,test} interfaces. The call

>parm <- c(14.8, 12.6667, 7.3333,

+ 13.1333)

>N <- c(20, 3, 3, 15)

>contrast <- contrMat(N, type = "Dunnett")

>nu <- 37

>mse <- 6.7099

R News ISSN 1609-3631

Vol. 2/3, December 2002 17

>covm <- mse * diag(1/N)

>csimint(estpar = parm, df = as.integer(nu),

+ covm = covm, cmatrix = contrast,

+ conf.level = 0.9, alternative = "less")

Simultaneous confidence

intervals: user-defined contrasts

90 % confidence intervals

Estimate lower CI upper CI

2-1 -2.133 -Inf 0.823

3-1 -7.467 -Inf -4.511

4-1 -1.667 -Inf -0.036

yields the same result as the first call above. The sam-
ple size vector N and the mean square error mse are
only required for a convenient computation of the co-
variance matrix. Note that the contrast matrix can ei-
ther be entered by hand or by using the availability
of standard contrast matrices in the contrMat func-
tion.

Graphical Representation

The method plot.hmtest is available for a graphi-
cal inspectation of the simultaneous confidence in-
tervals. For each contrast, the confidence interval is
plotted, for example plot(Dcirec) can be used for
plotting the one-sided Dunnett confidence intervals
for the recovery example from the first code snippet.

Dunnett contrasts

90 % one−sided confidence intervals

−8 −6 −4 −2 0

blanketb3−blanketb0

blanketb2−blanketb0

blanketb1−blanketb0

)●

)●

)●

Figure 1: A graphical representation of one-sided
Dunnett confidence intervals. The intervals are plot-
ted as horizontal lines where the limits of the inter-
vals are given by round brackets and the estimates
by a point.

Conclusion

This article addressed the application of multiple
comparisons using the multcomp package. The

present methods cover several standard test proce-
dures and allow for user specified type of compar-
isons. Also the discussion has been devoted to gen-
eral linear models, the package is also applicable to
more general linear and nonlinear mixed models as
long as the covariances between the estimates are
known.

Currently, the quantiles of the multivariate t or
normal distribution are computed using uniroot on
the p-value functions. This is time consuming and
will be improved in future versions of the mvtnorm
package.

Bibliography

Y. Hochberg and A. Tamhane. Multiple comparison
procedures. Wiley, New York, 1987. 15

T. Hothorn, F. Bretz, and A. Genz. On multivariate
t and Gauss probabilities in R. R News, 1(2):27–29,
2001. 15

R. Marcus, E. Peritz, and K.B. Gabriel. On closed test-
ing procedures with special reference to ordered
analysis of variance. Biometrika, 63:655–660, 1976.
15

P. Westfall. Multiple testing of general contrasts us-
ing logical constraints and correlations. Journal
of the American Statistical Association, 92:299–306,
1997. 15

P. H. Westfall, R. D. Tobias, D. Rom, R. D. Wolfinger,
and Y. Hochberg. Multiple Comparisons and Multi-
ple Tests Using the SAS System. SAS Institute Inc.,
Cary, NC, 1999. 15

Frank Bretz
Universität Hannover, LG Bioinformatik, FB Gartenbau
Herrenhäuser Str. 2, D-30419 Hannover
bretz@ifgb.uni-hannover.de

Torsten Hothorn
Friedrich-Alexander-Universität Erlangen-Nürnberg,
Institut für Medizininformatik, Biometrie und Epidemi-
ologie, Waldstraße 6, D-91054 Erlangen
Torsten.Hothorn@rzmail.uni-erlangen.de

Peter Westfall
Texas Tech University, Department of Information
Systems and Quantitative Sciences, Lubbock, TX 79409
WESTFALL@ba.ttu.edu

We would like to thank Doug Bates for corrections
and suggestions improving the readability.

R News ISSN 1609-3631

mailto:bretz@ifgb.uni-hannover.de
mailto:Torsten.Hothorn@rzmail.uni-erlangen.de
mailto:WESTFALL@ba.ttu.edu

Vol. 2/3, December 2002 18

Classification and Regression by
randomForest
Andy Liaw and Matthew Wiener

Introduction

Recently there has been a lot of interest in “ensem-
ble learning” — methods that generate many clas-
sifiers and aggregate their results. Two well-known
methods are boosting (see, e.g., Shapire et al., 1998)
and bagging Breiman (1996) of classification trees. In
boosting, successive trees give extra weight to points
incorrectly predicted by earlier predictors. In the
end, a weighted vote is taken for prediction. In bag-
ging, successive trees do not depend on earlier trees
— each is independently constructed using a boot-
strap sample of the data set. In the end, a simple
majority vote is taken for prediction.

Breiman (2001) proposed random forests, which
add an additional layer of randomness to bagging.
In addition to constructing each tree using a different
bootstrap sample of the data, random forests change
how the classification or regression trees are con-
structed. In standard trees, each node is split using
the best split among all variables. In a random for-
est, each node is split using the best among a sub-
set of predictors randomly chosen at that node. This
somewhat counterintuitive strategy turns out to per-
form very well compared to many other classifiers,
including discriminant analysis, support vector ma-
chines and neural networks, and is robust against
overfitting (Breiman, 2001). In addition, it is very
user-friendly in the sense that it has only two param-
eters (the number of variables in the random subset
at each node and the number of trees in the forest),
and is usually not very sensitive to their values.

The randomForest package provides an R inter-
face to the Fortran programs by Breiman and Cut-
ler (available at http://www.stat.berkeley.edu/
users/breiman/). This article provides a brief intro-
duction to the usage and features of the R functions.

The algorithm

The random forests algorithm (for both classification
and regression) is as follows:

1. Draw ntree bootstrap samples from the original
data.

2. For each of the bootstrap samples, grow an un-
pruned classification or regression tree, with the
following modification: at each node, rather
than choosing the best split among all predic-
tors, randomly sample mtry of the predictors
and choose the best split from among those

variables. (Bagging can be thought of as the
special case of random forests obtained when
mtry = p, the number of predictors.)

3. Predict new data by aggregating the predic-
tions of the ntree trees (i.e., majority votes for
classification, average for regression).

An estimate of the error rate can be obtained,
based on the training data, by the following:

1. At each bootstrap iteration, predict the data
not in the bootstrap sample (what Breiman
calls “out-of-bag”, or OOB, data) using the tree
grown with the bootstrap sample.

2. Aggregate the OOB predictions. (On the av-
erage, each data point would be out-of-bag
around 36% of the times, so aggregate these
predictions.) Calcuate the error rate, and call
it the OOB estimate of error rate.

Our experience has been that the OOB estimate of
error rate is quite accurate, given that enough trees
have been grown (otherwise the OOB estimate can
bias upward; see Bylander (2002)).

Extra information from Random Forests

The randomForest package optionally produces two
additional pieces of information: a measure of the
importance of the predictor variables, and a measure
of the internal structure of the data (the proximity of
different data points to one another).

Variable importance This is a difficult concept to
define in general, because the importance of a
variable may be due to its (possibly complex)
interaction with other variables. The random
forest algorithm estimates the importance of a
variable by looking at how much prediction er-
ror increases when (OOB) data for that vari-
able is permuted while all others are left un-
changed. The necessary calculations are car-
ried out tree by tree as the random forest is
constructed. (There are actually four different
measures of variable importance implemented
in the classification code. The reader is referred
to Breiman (2002) for their definitions.)

proximity measure The (i, j) element of the prox-
imity matrix produced by randomForest is the
fraction of trees in which elements i and j fall
in the same terminal node. The intuition is
that “similar” observations should be in the
same terminal nodes more often than dissim-
ilar ones. The proximity matrix can be used

R News ISSN 1609-3631

http://www.stat.berkeley.edu/users/breiman/
http://www.stat.berkeley.edu/users/breiman/

Vol. 2/3, December 2002 19

to identify structure in the data (see Breiman,
2002) or for unsupervised learning with ran-
dom forests (see below).

Usage in R

The user interface to random forest is consistent with
that of other classification functions such as nnet()
(in the nnet package) and svm() (in the e1071 pack-
age). (We actually borrowed some of the interface
code from those two functions.) There is a formula
interface, and predictors can be specified as a matrix
or data frame via the x argument, with responses as a
vector via the y argument. If the response is a factor,
randomForest performs classification; if the response
is continuous (that is, not a factor), randomForest
performs regression. If the response is unspecified,
randomForest performs unsupervised learning (see
below). Currently randomForest does not handle
ordinal categorical responses. Note that categorical
predictor variables must also be specified as factors
(or else they will be wrongly treated as continuous).

The randomForest function returns an object of
class "randomForest". Details on the components
of such an object are provided in the online docu-
mentation. Methods provided for the class includes
predict and print.

A classification example

The Forensic Glass data set was used in Chapter 12 of
MASS4 (Venables and Ripley, 2002) to illustrate vari-
ous classification algorithms. We use it here to show
how random forests work:

> library(randomForest)

> library(MASS)

> data(fgl)

> set.seed(17)

> fgl.rf <- randomForest(type ~ ., data = fgl,

+ mtry = 2, importance = TRUE,

+ do.trace = 100)

100: OOB error rate=20.56%

200: OOB error rate=21.03%

300: OOB error rate=19.63%

400: OOB error rate=19.63%

500: OOB error rate=19.16%

> print(fgl.rf)

Call:

randomForest.formula(formula = type ~ .,

data = fgl, mtry = 2, importance = TRUE,

do.trace = 100)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 19.16%

Confusion matrix:

WinF WinNF Veh Con Tabl Head class.error

WinF 63 6 1 0 0 0 0.1000000

WinNF 9 62 1 2 2 0 0.1842105

Veh 7 4 6 0 0 0 0.6470588

Con 0 2 0 10 0 1 0.2307692

Tabl 0 2 0 0 7 0 0.2222222

Head 1 2 0 1 0 25 0.1379310

We can compare random forests with support
vector machines by doing ten repetitions of 10-fold
cross-validation, using the errorest functions in the
ipred package:

> library(ipred)

> set.seed(131)

> error.RF <- numeric(10)

> for(i in 1:10) error.RF[i] <-

+ errorest(type ~ ., data = fgl,

+ model = randomForest, mtry = 2)$error

> summary(error.RF)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1869 0.1974 0.2009 0.2009 0.2044 0.2103

> library(e1071)

> set.seed(563)

> error.SVM <- numeric(10)

> for (i in 1:10) error.SVM[i] <-

+ errorest(type ~ ., data = fgl,

+ model = svm, cost = 10, gamma = 1.5)$error

> summary(error.SVM)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.2430 0.2453 0.2523 0.2561 0.2664 0.2710

We see that the random forest compares quite fa-
vorably with SVM.

We have found that the variable importance mea-
sures produced by random forests can sometimes be
useful for model reduction (e.g., use the “important”
variables to build simpler, more readily interpretable
models). Figure 1 shows the variable importance of
the Forensic Glass data set, based on the fgl.rf ob-
ject created above. Roughly, it is created by

> par(mfrow = c(2, 2))

> for (i in 1:4)

+ plot(sort(fgl.rf$importance[,i], dec = TRUE),

+ type = "h", main = paste("Measure", i))

We can see that measure 1 most clearly differentiates
the variables. If we run random forest again drop-
ping Na, K, and Fe from the model, the error rate re-
mains below 20%.

R News ISSN 1609-3631

Vol. 2/3, December 2002 20

Measure 1

RI

Mg

Ca
Ba Si

Al

Fe
K Na0

10
20

30
40

Measure 2

RI Mg Al

Ca
Ba

K Na
Si

Fe

0
5

10
15

Measure 3

RI Mg

Ca Al Ba K Si Na Fe

0.
0

0.
2

0.
4

0.
6

Measure 4

Al Mg RI
Ca

Na K
Si

Ba

Fe

0
5

10
15

20
25

Figure 1: Variable importance for the Forensic Glass
data.

The gain can be far more dramatic when there are
more predictors. In a data set with thousands of pre-
dictors, we used the variable importance measures to
select only dozens of predictors, and we were able to
retain essentially the same prediction accuracy. For a
simulated data set with 1,000 variables that we con-
structed, random forest, with the default mtry, we
were able to clearly identify the only two informa-
tive variables and totally ignore the other 998 noise
variables.

A regression example

We use the Boston Housing data (available in the
MASS package) as an example for regression by ran-
dom forest. Note a few differences between classifi-
cation and regression random forests:

• The default mtry is p/3, as opposed to p1/2 for
classification, where p is the number of predic-
tors.

• The default nodesize is 5, as opposed to 1 for
classification. (In the tree building algorithm,
nodes with fewer than nodesize observations
are not splitted.)

• There is only one measure of variable impor-
tance, instead of four.

> data(Boston)

> set.seed(1341)

> BH.rf <- randomForest(medv ~ ., Boston)

> print(BH.rf)

Call:

randomForest.formula(formula = medv ~ .,

data = Boston)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 4

Mean of squared residuals: 10.64615

% Var explained: 87.39

The “mean of squared residuals” is computed as

MSEOOB = n−1
n

∑
1
{yi − ŷOOB

i }2,

where ŷOOB
i is the average of the OOB predictions

for the ith observation. The “percent variance ex-
plained” is computed as

1− MSEOOB

σ̂2
y

,

where σ̂2
y is computed with n as divisor (rather than

n− 1).
We can compare the result with the actual data,

as well as fitted values from a linear model, shown
in Figure 2.

Scatter Plot Matrix

RF

10
10

20

20

30

30

30

30

40

40
50

50

●

●

●●
●

●

●

●●
●
● ●●●●
●●

●●
●

●

●
●

●
●●
●

●

●
●

●

●

● ●●

●●●●

●

●

●

●●
●

●●●● ●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●
●

●

●
●

●●●
●

●●●●

●
●

●●●

●

●
●

●●

●●●●
●

●

●

●●

●

●
●

●●●
●●

●●
●
●

●

●●

●
●

●●
●
●●●
●

●
●●

●
●

●
●

●●●
●

●
●●

●

● ●●
●

●
●

● ●
●

●●
●

●●
●

●
●●

●

●

●●

●

●

●●

●●

●

●
●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●●●
●

●

●

●●

●●
●

●

●
●●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●
●

●

●

●

●

● ●

●

●● ●●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●●

●●

●

●
●●

●
●●

●●

●●
●

●

●
●

●

●●

●
●

●
●●●

●●● ●●●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●●●

●

●●●

●

●

●
●

●

●●

●●

●
●

●

● ●
●
●

●

●●
●

● ●
●
●●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
● ●

● ●
●

●●

●
●●

●

●
●

●

●
●
●●

●

●
●

●
●

●●

●●
●
●

●
●

●

●●

●●●●●
●●

●

●
●●● ●

●
●

●●
●●●

● ●●
●●

●●

●

●●
●

●
●

●
●

●

●

●●
●

●
●

●●
●

●

●
●●●●

●●●●
●

●

●

●

●

●

●

●●
●

●

●

●●
●

● ● ●●●
● ●

● ●
●

●

●
●

●
●●
●

●

●
●

●

●

●●●

●●● ●

●

●

●

●●
●

●●●● ●
●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

● ●
●

●

●
●
●●●●

●●●●

●
●
●●●

●

●
●

● ●

●●●
●

●

●

●

● ●

●

●
●

●●●
●●
●●●

●

●

●●

●
●

●●
●

● ●●
●

●
● ●

●
●

●
●

●● ●
●

●
●●

●

● ●●
●

●
●

●●
●

● ●
●

●●
●

●
●●

●

●

●●

●

●

●●

● ●

●

●
●●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●●

●

●●

●

●

● ●●
●

●

●

●●

●●
●

●

●
●●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

● ●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●

●●

●

●
●
●
●

●

●

●

●

● ●

●

●● ●● ●

●
●

●

●
●

●
●

●

●

●

●

●
●

● ●

●

●

●●

●●

●

●
● ●

●
●●

●●

●●
●

●

●
●

●

●●

●
●

●
● ●●

●●● ●●●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●●●

●

●●●

●

●

●
●

●

●●

●●

●
●

●

●●
●

●

●

●●
●

●●
●

● ●
●

●
●

●

●
●
●
●

●

●

●

●
● ●●

●●

●

●

●

●

●

●
●●

●●
●

●●

●
●●

●

●
●

●

●
●
●●

●

●
●

●
●

●●

●●
●

●

●
●

●

●●

●●●●●
●●

●

●
●●●●

●
●

●●●
●●

●●●
●●

● ●

●

●●
●

●
●

●
●

●

●

●●
●

●
●

●●
●

●

●
● ●●●

● ●●●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●●
●●

●●●
●

●●
●

●

●
●

●
●

●
●●

●
●

●

●

●

●●

●
●●●

●
●

●
●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
● ●

●

●

●

●

●

●

●
●●
●

●●●
●●

●
●●●●

●

●

●

●●

●●
●●

●
●

●

●●
●

●●

●●
●

●
●

●
●

●●

●

●●

●

●

●●

●●●
●

●

●

●
●

●●

●

●

●●●

●
●

●
●

●

●
●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●
●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●●

●

●●
●●●

●

●

●
●

●●
●

●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●●

●●

●

●

●

●●
●

●● ● ●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●
●●

●

●

●

●

●

●

●

●

●

●●●

●●
●

●
●

●●

●

●
●●

●●

●●
●

●
●

●

●

●

●

●
●●

●
●●

●

●

●●
●

●

●●●

●
●

●
●

●

●
●●●●●

●●●

●

●

● ●

●
●

●
●

●
●●

●

●

●
●

●

●●

●

●

●●
●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●●
●

●

●●

●

●
●●●

●

●●

●

●
●

●●

●

●

●●

●●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●
● ●

●
●

●

●
●●

●

● ●
●

●●
●●

●

●

●●

●
●●

●●

●●●●●
●●

●

●●

●●

●
●● ●●

●
●
●

●
●●

●
●

●●

●

●●

●

●

●
●

●

●
●

●
●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●
●

●●

●
●

●
LM

0
0

10

10

20

20

20

20

30

30

40

40

●

●

●
● ●

●
●

●

●

●●
● ●

●●●
●

● ●
●

●

●
●

●
●

●
●●

●
●

●

●

●

●●

●
●● ●

●
●

●
●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
● ●

●

●

●

●

●

●

●
●●

●
●●●
●●

●
●●●●

●

●

●

● ●

●●
● ●

●
●

●

● ●
●

●●

●●
●
●
●

●
●
● ●

●

●●

●

●

●●

●● ●●
●

●

●
●

●●

●

●

●● ●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●●

●

●●
●●●

●

●

●
●

●●
●

●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●●●

● ●

●

●

●

●●
●

●●● ●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●
●●

●

●

●

●

●

●

●

●

●

●● ●

● ●
●

●
●

●●

●

●
●●

● ●

● ●
●

●
●

●

●

●

●

●
● ●

●
●●

●

●

●●
●

●

●●●

●
●

●
●

●

●
●●●●●

●●●

●

●

● ●

●
●

●
●

●
●●

●

●

●
●

●

●●

●

●

●●
●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●●
●

●

●●

●

●
●● ●

●

● ●

●

●
●
●●

●

●

●●

● ●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●
● ●

●
●

●

●
●●●

●●
●

●●
●●

●

●

●●

●
●●

●●

●●●●●
●●

●

●●

●●

●
●●●●
●
●

●

●
●●
●
●
● ●

●

●●

●

●

●
●

●

●
●

●
●
●

●
●

●

●

●

●
●

● ●

●
●

●
●

●
●

●●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●
●

●●●

●
●●

●

●

●

●
●●

●
●●

●
●

●●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●●
●●

●

●●
●●

●

● ●
●

●

●●●
●

●

●

●

●

●

●

●●

●●
●●●●●●
●

●

●● ●●

●
●

●
●

●
●●

●
●
●

●●
●

●

●●

●

●

●
●● ●

●

●

●● ●
●

●
●

●●

●
●

●
●

●

●
●
●

●

●

●●

●

● ●●

●
●

●

●●
●

●
●

● ●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●
●

●
●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●
●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●
●

●
●

●●

●
●

●●
●●

●

●

●

●
●

●
●●

●●
●
●●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●●●
●

●●

●

●

●

●
●

● ●●●●

● ●
●

●●●

● ●●●
●

●
●

●

●

●
●

●

●

●

●
●●●

●

●
●●

●

●

●●

●

●

●

●

●

●
●●

●

●●●

●
● ●

●
●

●

●
●

●
●●●

●

● ●
●

●
●

●

●●●

●
●

●
●

●

●●

●
●

●
●●

●●
●

●●
●●
●

●

●
●
●●
●
●●●●

●● ●

●

●

●●

●

●
●

●
● ●

●

●
●●

●
●

●

●
●

●

●
●

●
●

●
●

●

●●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●
●

● ●●

●
●●

●

●

●

●
●●

●
●●

●
●

● ● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●●

●●

●

●●●●

●

● ●
●

●

●●●
●

●

●

●

●

●

●

●●

●●
●●● ●●●

●
●

●● ●●

●
●

●
●

●
●●

●
●

●

●●
●

●

●●

●

●

●
●● ●

●

●

●● ●
●

●
●

●●

●
●

●
●

●

●
●

●
●

●

●●

●

● ●●

●
●

●

● ●
●

●
●

● ●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●●

●

●

●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●
●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●
●

●
●

●●

●
●

●●
●●

●

●

●

●
●

●
●●

●●
●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●●●
●

●●

●

●

●

●
●

● ●●●●

●●
●

● ●●

●● ●●●

●
●

●

●

●
●

●

●

●

●
● ●●

●

●
●●

●

●

●●

●

●

●

●

●

●
●●

●

● ● ●

●
● ●

●
●

●

●
●

●
●●●

●

●●
●

●
●

●

●●●

●
●

●
●

●

●●

●
●
●
●●

●●
●

●●
●●

●

●

●
●
● ●
●

●● ●●●● ●

●

●

●●

●

●
●

●
● ●

●

●
● ●
●

●

●

●
●

●

●
●

●
●

●
●

●

●●

●
●

●
●

●

Actual

10

10

20

20

30

30

30

30

40

4050 50

Figure 2: Comparison of the predictions from ran-
dom forest and a linear model with the actual re-
sponse of the Boston Housing data.

An unsupervised learning example

Because random forests are collections of classifica-
tion or regression trees, it is not immediately appar-
ent how they can be used for unsupervised learning.
The “trick” is to call the data “class 1” and construct a
“class 2” synthetic data, then try to classify the com-
bined data with a random forest. There are two ways
to simulate the “class 2” data:

1. The “class 2” data are sampled from the prod-
uct of the marginal distributions of the vari-
ables (by independent bootstrap of each vari-
able separately).

R News ISSN 1609-3631

Vol. 2/3, December 2002 21

2. The “class 2” data are sampled uniformly from
the hypercube containing the data (by sam-
pling uniformly within the range of each vari-
ables).

The idea is that real data points that are similar to
one another will frequently end up in the same ter-
minal node of a tree — exactly what is measured by
the proximity matrix that can be returned using the
proximity=TRUE option of randomForest. Thus the
proximity matrix can be taken as a similarity mea-
sure, and clustering or multi-dimensional scaling us-
ing this similarity can be used to divide the original
data points into groups for visual exploration.

We use the crabs data in MASS4 to demonstrate
the unsupervised learning mode of randomForest.
We scaled the data as suggested on pages 308–309
of MASS4 (also found in lines 28–29 and 63–68
in ‘$R HOME/library/MASS/scripts/ch11.R’), result-
ing the the dslcrab data frame below. Then run
randomForest to get the proximity matrix. We can
then use cmdscale() (in package mva) to visualize
the 1−proximity, as shown in Figure 3. As can be
seen in the figure, the two color forms are fairly well
separated.

> library(mva)

> set.seed(131)

> crabs.prox <- randomForest(dslcrabs,

+ ntree = 1000, proximity = TRUE)$proximity

> crabs.mds <- cmdscale(1 - crabs.prox)

> plot(crabs.mds, col = c("blue",

+ "orange")[codes(crabs$sp)], pch = c(1,

+ 16)[codes(crabs$sex)], xlab="", ylab="")

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.4 −0.2 0.0 0.2 0.4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

●

●

●

●

B/M
B/F
O/M
O/F

Figure 3: The metric multi-dimensional scaling rep-
resentation for the proximity matrix of the crabs
data.

There is also an outscale option in
randomForest, which, if set to TRUE, returns a mea-
sure of “outlyingness” for each observation in the

data set. This measure of outlyingness for the jth
observation is calculated as the reciprocal of the sum
of squared proximities between that observation and
all other observations in the same class. The Example
section of the help page for randomForest shows the
measure of outlyingness for the Iris data (assuming
they are unlabelled).

Some notes for practical use

• The number of trees necessary for good perfor-
mance grows with the number of predictors.
The best way to determine how many trees are
necessary is to compare predictions made by a
forest to predictions made by a subset of a for-
est. When the subsets work as well as the full
forest, you have enough trees.

• For selecting mtry, Prof. Breiman suggests try-
ing the default, half of the default, and twice
the default, and pick the best. In our experi-
ence, the results generally do not change dra-
matically. Even mtry = 1 can give very good
performance for some data! If one has a very
large number of variables but expects only very
few to be “important”, using larger mtry may
give better performance.

• A lot of trees are necessary to get stable es-
timates of variable importance and proximity.
However, our experience has been that even
though the variable importance measures may
vary from run to run, the ranking of the impor-
tances is quite stable.

• For classification problems where the class fre-
quencies are extremely unbalanced (e.g., 99%
class 1 and 1% class 2), it may be necessary to
change the prediction rule to other than ma-
jority votes. For example, in a two-class prob-
lem with 99% class 1 and 1% class 2, one may
want to predict the 1% of the observations with
largest class 2 probabilities as class 2, and use
the smallest of those probabilities as thresh-
old for prediction of test data (i.e., use the
type=’prob’ argument in the predict method
and threshold the second column of the out-
put). We have routinely done this to get ROC
curves. Prof. Breiman is working on a similar
enhancement for his next version of random
forest.

• By default, the entire forest is contained in the
forest component of the randomForest ob-
ject. It can take up quite a bit of memory
for a large data set or large number of trees.
If prediction of test data is not needed, set
the argument keep.forest=FALSE when run-
ning randomForest. This way, only one tree is
kept in memory at any time, and thus lots of

R News ISSN 1609-3631

Vol. 2/3, December 2002 22

memory (and potentially execution time) can
be saved.

• Since the algorithm falls into the “embarrass-
ingly parallel” category, one can run several
random forests on different machines and then
aggregate the votes component to get the final
result.

Acknowledgment

We would like to express our sincere gratitute to
Prof. Breiman for making the Fortran code available,
and answering many of our questions. We also thank
the reviewer for very helpful comments, and point-
ing out the reference Bylander (2002).

Bibliography

L. Breiman. Bagging predictors. Machine Learning, 24
(2):123–140, 1996. 18

L. Breiman. Random forests. Machine Learning, 45(1):
5–32, 2001. 18

L. Breiman. Manual on setting up, using, and
understanding random forests v3.1, 2002.
http://oz.berkeley.edu/users/breiman/
Using_random_forests_V3.1.pdf. 18, 19

T. Bylander. Estimating generalization error on two-
class datasets using out-of-bag estimates. Machine
Learning, 48:287–297, 2002. 18, 22

R. Shapire, Y. Freund, P. Bartlett, and W. Lee. Boost-
ing the margin: A new explanation for the effec-
tiveness of voting methods. Annals of Statistics, 26
(5):1651–1686, 1998. 18

W. N. Venables and B. D. Ripley. Modern Applied
Statistics in S. Springer, 4th edition, 2002. 19

Andy Liaw
Matthew Wiener
Merck Research Laboratories
andy_liaw@merck.com
matthew_wiener@merck.com

Some Strategies for Dealing with
Genomic Data
by R. Gentleman

Introduction

Recent advances in molecular biology have enabled
the exploration of many different organisms at the
molecular level. These technologies are being em-
ployed in a very large number of experiments. In this
article we consider some of the problems that arise in
the design and implementation of software that asso-
ciates biological meta-data with the experimentally
obtained data. The software is being developed as
part of the Bioconductor project www.bioconductor.
org.

Perhaps the most common experiment of this
type examines a single species and assays samples
using a single common instrument. The samples are
usually homogeneous collection of a particular type
of cell. A specific example is the study of mRNA ex-
pression in a sample of leukemia patients using the
Affymetrix U95A v2 chips Affymetrix (2001). In this
case a single type of human cell is being studied us-
ing a common instrument.

These experiments provide estimates for thou-
sands (or tens of thousands) of sample specific fea-
tures. In the Affymetrix experiment described previ-

ously data on mRNA expression for approximately
10,000 genes (there are 12,600 probe sets but these
correspond to roughly 10,000 genes). The experi-
mental data, while valuable and interesting require
additional biological meta-data to be correctly inter-
preted. Considering once again the example we see
that knowledge of chromosomal location, sequence,
participation in different pathways and so on pro-
vide substantial interpretive benefits.

Meta-data is not a new concept for statisticians.
However, the scale of the meta-data in genomic
experiments is. In many cases the meta-data are
larger and more complex than the experimental data!
Hence, new tools and strategies for dealing with
meta-data are going to be needed. The design of
software to help manage and manipulate biological
annotation and to relate it to the experimental data
will be of some importance. As part of the Biocon-
ductor project we have made some preliminary stud-
ies and implemented some software designed to ad-
dress some of these issues. Some aspects of our in-
vestigations are considered here.

R News ISSN 1609-3631

http://oz.berkeley.edu/users/breiman/Using_random_forests_V3.1.pdf
http://oz.berkeley.edu/users/breiman/Using_random_forests_V3.1.pdf
mailto:andyprotect T1	extunderscore liaw@merck.com
mailto:matthewprotect T1	extunderscore wiener@merck.com
www.bioconductor.org
www.bioconductor.org

Vol. 2/3, December 2002 23

Issues for consideration

Some of the issues that need to be considered when
designing software that associates biological meta-
data with experimentally obtained data are listed
next. The list is numbered for further reference and
the numbering scheme does not reflect importance.

1. the biological meta data are constantly evolv-
ing

2. there is some commonality across species

3. there is some commonality across measure-
ment instruments

4. data (either experimental or annotation) may
be sensitive and there may be a desire for pri-
vacy

5. for most species there is far too much meta-
data available to easily provide access to all rel-
evant data without some curation

It is worth distinguishing these meta-data from
the meta-data that report information about the sam-
ples themselves, the experimental conditions and a
variety of other experiment specific data. These data
are imporatant and must also be dealt with. For
the analysis of microarray data the MIAME standard
Brazma et al. (2001) has been proposed and is being
widely adopted. These data are being dealt with in
the Biobase package and are attached directly to the
expression data. We now turn our attention to the
genomic or biological meta-data for the remainder of
this paper.

The design

After careful consideration of the issues raised in Sec-
tion 8 we settled on a design based on the R pack-
age system. The specific design is currently to pro-
vide a number of data items in the package. For each
biological variable of interest (such as chromosome
location or LocusLink identifier) a seperate hash ta-
ble is constructed mapping from the manufacturer’s
identifier (Affymetrix in our example) to the quan-
tity of interest. These hash tables are then placed in
the ‘data’ directory of the package and documenta-
tion for them placed in the ‘man’ directory. Other
software is added as needed.

There are many benefits to supplying meta-data
in the form of R packages. These include:

• a version number mechanism

• a mechanism for supplying additional software
that may be needed only in specific cases

• mechanisms for documentation (both help
pages and vignettes)

• an organizational structure that simplifies au-
tomatic generation, distribution and documen-
tation

• mechanisms that support the implementation
of quality control processes (the R CMD suite of
functions)

Given the number of organisms (distinct
genomes) and the number of different measurement
devices that may be used a robust and reliable index-
ing and distribution system will be required. Some
of these issues have already been addressed within
R for distributing packages and that system will be
extended to provide support for projects such as the
current one.

Since the meta-data are evolving and must be
compiled from a variety of sources some form of ver-
sioning will be essential. Many biological data re-
sources (such as the Gene Ontology Consortium and
GenBank) provide version information that must be
propagated to the end user. These data are easily in-
cluded in the manual page that describes the partic-
ular data element in the distributed package. These
data specific build numbers are essential so that end
users can easily compare their results.

One of the major projects undertaken by the Bio-
conductor project is to enhance the repository man-
agement tools that were initially developed by K.
Hornik and F. Leisch to provide services through
CRAN. The software is currently available in the re-
posTools package available form the Bioconductor
anonymous cvs archive. This package represents the
collaborative efforts of K. Hornik, F. Leisch, V. Carey,
J. Gentry and myself.

From the perspective of biological meta-data the
concept of distributing data as R packages via a cen-
tralized repository provides many benefits. The data
generator (or assembler) has a specific protocol (API)
for updating their offerings and a specific mecha-
nism for providing broad access to both new materi-
als and older versions. On the client side, again there
is a specific protocol and mechanism for obtaining
specific meta-data (generally the most current). The
processes that the client must carry out are entirely
moderated through R. While other alternatives are
possible it seems that the end-user will find it eas-
ier if they have a single system to learn for both data
management and data analysis.

Among the objectives of the repository project are
to enhance the version management (users may want
to maintain multiple versions of particular libraries)
capabilities of R, to enable the use of multiple repos-
itories as suppliers of software and to allow users to
become providers of software.

Once reposTools is included in R users will in-
teract with the software through install.packages
and update.packages. In the current implemen-
tation these have a 2 appended to keep them dis-
tinct from the system versions. reposTools con-

R News ISSN 1609-3631

Vol. 2/3, December 2002 24

tains vignettes that will help guide interested readers
through the steps needed to set up their own reposi-
tory and to export it. More details on this project will
be presented in later editions of R News.

Another important component of the approach
taken is the assumption that the meta-data pack-
ages will need to be automatically generated and that
there must be a mechanism that allows them to be
updated. Autogeneration of packages is the only
practical method for dealing with the large number
of species and of technologies that need to be acco-
modated.

To facilitate this process we have developed the
AnnBuilder package. The basic philosophy embod-
ied in this package is to allow the package builder to
supply the locations of a set of source data files. From
these different variables are extracted and assembled
into a large coherent set of data files. In this article
we present an overview of this process and we refer
the reader to Zhang et al. (2002, in preparation) for
specific details.

In essence AnnBuilder supports the construction
and distribution of custom annotation packages. The
user specifies the locations of data resources, the
mechanisms for extracting and combining the data
and finally the required output. Specification of data
resources can be URLs or local files. The user must
also specify which fields should be extracted from
which packages.

The data processing part of AnnBuilder extracts
the specified fields from each file. The output may
be to a database or in some cases to a file. The main
purpose of this step is often data reduction. The pri-
mary source data is often much larger than is needed
for any particular experiment. These tables are then
processed (using a variety of tools including SQL and
R) and the resultant unified mapping table can be ex-
ported as an R package, an XML data file (the DTD
is) or as a database file that is suitable for querying
by any means (including R, Perl, Python etc).

When multiple mappings or sources are avail-
able for a particular data item some form of reduc-
tion is needed. Reasonable suggestions include us-
ing the most common value (mode), nominating one
source as trusted and using it if there are differences.
AnnBuilder provides a general mechanism that al-
lows the user to associated a SQL query statement
with each variable to perform the selection. In most
cases the function is simply the identity (since we
have only one source for many of the quantities).

In many ways this sort of data assemblage is of-
ten required in other fields. There is nothing about
AnnBuilder that is specific to biological data and
it may be beneficial to consider the application of
AnnBuilder in those areas. We would also like to
consider slightly different models for data acquisi-
tion. As web-services become more common it will
be important to extend the AnnBuilder concept to
deal with data resources of this type.

For specific examples of the output of
AnnBuilder the reader is referred to the Biocon-
ductor Web site. Many different data packages are
available by simply following the links. Interactions
with the various Bioconductor packages are primar-
ily mediated by the annotate package.

Discussion

We have considered some approaches to dealing
with data complexity. By abstracting out both the
platform (technology) and the species we have de-
veloped an annotation system that is practical and
that can be maintained and extended.

While we have tried to make the data processing
automatic it is not. The data are sufficiently com-
plex and different to prevent complete automation.
However, the data assemblage process is largely au-
tomatic and well documented. The requirements on
both the server side and the client side are reasonably
explicit and will be further refined as the projects
evolve. We believe our efforts constitute a reason-
able solution and have been using this methods for
some time now.

The distribution of the resultant data is somewhat
easier. Once appropriate names have been selected
for the data packages they can easily be distributed
and updated using R’s repository system. The soft-
ware in supplied in the reposTools package will need
some testing but should provide an adequate basis
for the distribution of these data packages.

By assembling data packages we also define an
interface that can be used by other packages to access
that data. In particular the functions in the package
annotate are designed to be applied to any conform-
ing experimental data and any conforming annota-
tion package. The requirements placed on both the
experimental data and the annotation package are
documented and any package or data source that sat-
isfies those requirements can be used.

It is rather interesting to close by reviewing some
of the issues that have been raised in developing this
paradigm.

• using http connections to access data on the
web

• using DBI to interact with the data base that
will do the heavy duty processing

• using XML to process the data

• automatic package generation

• using R resources to build in quality control
procedures

We finish our discussion by reviewing the issues
raised in Section 8. By using R packages we address
issue 1 since the package system allows us to version

R News ISSN 1609-3631

Vol. 2/3, December 2002 25

and update the data. The AnnBuilder approach ad-
dresses issues 2, 3 and 5. Data reduction is under the
control of the data assembler. The notion of a pack-
age that generates packages is our method of deal-
ing specifically with issues 2 and 3. The repository
mechanism allows the data assembler to distribute
the assembled data (they may choose to restrict dis-
tribution only to specific sites).

Acknowledgment

Robert Gentleman’s work is supported in part by NI-
H/NCI Grant 2P30 CA06516-38.

Bibliography

Affymetrix. Affymetrix Microarray Suite User Guide.
Affymetrix, Santa Clara, CA, version 5 edition,

2001. 22

A Brazma, P Hingamp, and J Quackenbush. Mini-
mum information about a microarray experiment:
towards standards for microarray data. Nature Ge-
netics, 29:365–371, 2001. 23

Jianhua Zhang, Vincent Carey, and Robert Gentle-
man. An extensible application for assembling an-
notation for genomic data. Bioinformatics, 19, 2002.
24

Jianhua Zhang, Vincent Carey, A. J. Rossini, and R. C.
Gentleman. Annbuilder - an open source applica-
tion for genomic data annotation. JSS, in prepara-
tion. 24

Robert Gentleman
DFCI
rgentlem@jimmy.harvard.edu

Changes to the R-Tcl/Tk package
by Peter Dalgaard

Introduction

In a previous issue of R News, I gave a small tuto-
rial on the basic use of the tcltk package for creat-
ing graphical user interfaces (Dalgaard, 2001). Since
then, there has been a number of changes to the pack-
age, and the purpose of this paper is to outline the
new possibilities offered by the modified interface.

Some of the changes were incompatible with old
code. In particular, some of the examples in Dalgaard
(2001) no longer run. The last section of the paper
contains a revised version of the scripting widget.

Control variable changes

The old-style interface to Tcl variables allowed you
to change the Tcl variable foo using syntax like

tclvar$foo <- "Hello, World"

With this approach, foo becomes a global Tcl vari-
able, and there is no way to ensure that two R func-
tions do not accidentally use the same variable name.
(This is less of a problem in Tcl because there you
can use techniques like prefixing the variable with
the window name.)

Therefore, a new technique is introduced using
the object class "tclVar". The creator function for
that class is tclVar() and it works by creating a
new Tcl variable. You generally do not need to care
about the names on the Tcl side, but they are simply

::RTcl1, ::RTcl2, and so forth (the :: prefix ensures
that they are in Tcl’s global namespace). The acces-
sor function is tclvalue() and a typical usage is like
this:

foo <- tclVar()

tclvalue(foo) <- "Hello, World"

Notice that you have to create the variable before
it can be used.

The "tclVar" objects are subject to finalization,
so that when they go out of scope, the garbage col-
lector will eventually remove their Tcl counterparts.

Tcl objects

The C interface to Tcl contains the notion of dual
ported objects. All Tcl objects have a string represen-
tation, but they can also have a “dual personality” as
doubles, integers, or lists of strings, doubles, or in-
tegers. (There are other possibilities but we ignore
them here.)

This allows you to access Tcl variables without
going via the string representation. The latter can
be a major pain because of “quoting hell”: The need
to escape certain characters because they otherwise
have special meaning to the Tcl interpreter.

The interface from R maps double, integer, and
character vectors to Tcl lists of the corresponding ob-
ject types. This works via an accesor function called
tclObj(). An example should convey the gist of the
interface:

R News ISSN 1609-3631

mailto:rgentlem@jimmy.harvard.edu

Vol. 2/3, December 2002 26

> foo <- tclVar()

> tclObj(foo) <- c(pi,exp(1))

> tclvalue(foo)

[1] "3.14159265359 2.71828182846"

> as.character(tclObj(foo))

[1] "3.14159265359" "2.71828182846"

> as.double(tclObj(foo))

[1] 3.141593 2.718282

> as.integer(tclObj(foo))

[1] NA NA

Notice that the elements can not be interpreted as
integers, and that as.integer in that case returns NA
rather than attempting to truncate the values.

The return value from tclObj() is an object of
class "tclObj". It is only possible to modify such ob-
jects when there is an underlying Tcl variable. Also,
the only way to modify a Tcl object is to extract it in
its entirety, modify the R representation, and store it
back into the Tcl variable.

The issue that prompted the development of this
interface was the handling of listboxes. Using Tcl ob-
jects, this can be done as simply as

mylist <- tclVar()

tkpack(lb <- tklistbox(tt <- tktoplevel(),

listvariable = mylist))

tclObj(mylist) <- month.name

Using the string representation, you would need
something like

tclvalue(mylist) <-

paste(month.name, collapse=" ")

which may not look too bad, but if you need to have
a list elements with spaces inside things get compli-
cated.

With the Tcl object interface, you have a direct
connection to the list contents, and can do things like

as.character(tclObj(mylist))[

as.integer(tkcurselection(lb))+1]

which will return the text of any selected items. No-
tice that it is necessary to add 1 since Tcl uses zero-
based indexing.

Return values

The return values from .Tcl calls (and thus most of
the interface functions, the main exception being the
widget creation commands) are now objects of class
"tclObj" instead of a string value. This is useful for
much the same reasons as described in the previous
section.

For instance, if you turn on multiple selection
mode for a listbox with

tkconfigure(lb, selectmode="multiple")

then the string representation of

tkcurselection(lb)

might be "0 3 4 5" and it would be the program-
mer’s responsibility to parse the string into four in-
tegers. With the object representation, you push that
responsibility into the Tcl layer and it becomes pos-
sible to access the vector of indices directly using
as.integer(tkcurselection(lb)).

Changing the return value created some incom-
patibilities with some earlier code. Fortunately the
extent of the problems is limited since return values
are often ignored, and you can alway restore compat-
ibility by taking tclvalue of the returned object.

Callback changes

Several new formats have been introduced for spec-
ifying callbacks. Some of these just offer nota-
tional convenience, but some were necessary be-
cause the old interface had no way to invoke Tcl’s
break command. For instance you bind an action
to, say, <Control-Return> then any other bindings
for <Return> will also execute, unless break is used.
This can now be coded as

tkpack(txt <- tktext(tktoplevel()))

tkbind(txt, "<Control-Return>",

expression(print(tkget(txt,"0.0","end")),

break))

Compared to the old style where a callback had
to be a function, the new rules allow some simplifi-
cation when there are no arguments. E.g.,

but <- tkbutton(tt, text="Hit me!",

command=expression(cat("OW!!")))

Conversely, if you do need to be able to pass argu-
ments to the callback and need to use break, then you
can do so by specifying a function for one or more el-
ements of the callback expression. That is, you could
use

tkbind(txt, "<Control-Button-1>",

expression(function(x,y) cat(x,y,"\n"),

break))

to create a callback that prints out the mouse cursor
position, without performing the text cursor motion
bound to <Button-1>.

New version of the script widget

The script-window application in Dalgaard (2001)
got hit rather badly by the interface changes. Below
is a version that works with the new interface.

Notice that it is necessary to insert tclvalue()
constructions in several places, even when the return
values are only used as arguments to Tcl/Tk rou-
tines. You can sometimes avoid this because the de-
fault treatment of arguments (in .Tcl.args()) is to
preprocess them with as.character(), but for ob-
jects of class "tclObj" this only works if there are

R News ISSN 1609-3631

Vol. 2/3, December 2002 27

no whitespace characters in the string representa-
tion. The contents of the script window and the files
that are read can obviously contain spaces and it is
also not safe to assume that file names and directory
names are single words.

Notice also that several new functions have
been added to the interface, tkopen, tkclose,
tkfile.tail, etc. (Beware that tkread was not
added until R version 1.6.1; for version 1.6.0 you
need tkcmd("read",...) instead.)

tkscript <- function() {

wfile <- ""

tt <- tktoplevel()

txt <- tktext(tt, height=10)

tkpack(txt)

save <- function() {

file <- tclvalue(tkgetSaveFile(

initialfile=tclvalue(tkfile.tail(wfile)),

initialdir=tclvalue(tkfile.dir(wfile))))

if (!length(file)) return()

chn <- tkopen(file, "w")

tkputs(chn, tclvalue(tkget(txt,"0.0","end")))

tkclose(chn)

wfile <<- file

}

load <- function() {

file <- tclvalue(tkgetOpenFile())

if (!length(file)) return()

chn <- tkopen(file, "r")

tkinsert(txt, "0.0", tclvalue(tkread(chn)))

tkclose(chn)

wfile <<- file

}

run <- function() {

code <- tclvalue(tkget(txt,"0.0","end"))

e <- try(parse(text=code))

if (inherits(e, "try-error")) {

tkmessageBox(message="Syntax error",

icon="error")

return()

}

cat("Executing from script window:",

"-----", code, "result:", sep="\n")

print(eval(e))

}

topMenu <- tkmenu(tt)

tkconfigure(tt, menu=topMenu)

fileMenu <- tkmenu(topMenu, tearoff=FALSE)

tkadd(fileMenu, "command", label="Load",

command=load)

tkadd(fileMenu, "command", label="Save",

command=save)

tkadd(topMenu, "cascade", label="File",

menu=fileMenu)

tkadd(topMenu, "command", label="Run",

command=run)

}

Future developments

The tcltk package is still nowhere near its final state,
and there are several changes and enhancements in

the works.
The use of Tcl objects has proven to be a big ad-

vantage, and I’d like to extend its use so that we as
far as possible can avoid direct use of string represen-
tations. In particular, I believe that it should be pos-
sible to modify the current .Tcl interface to use Tcl
objects and thereby avoid the “quoting hell” associ-
ated with passing arbitrary character strings. Also, it
ought to be possible to pass Tcl objects directly to Tcl
commands, which would remove the need for many
calls to tclvalue.

We need to become able to take advantage of the
various extensions that exist to Tcl and Tk. Some-
times this is almost trivial, but in other cases attempt-
ing to do so reveals shortcomings of the current in-
terface. For instance, it is tempting to use the fea-
tures of the TkTable widget to implement a better
spreadsheet-like data editor than the raw X11 one
we currently have. However, this entails finding a
way to return a value from a callback, and/or an ex-
tension of the interface to Tcl variables that can deal
with arrays. Notice that it is not quite trivial to return
values from a callback, since we cannot in general
expect to convert an arbitrary R object to something
that makes sense in Tcl.

Another thing that I have been working on is the
addition of a Tk-based console for R. The main rea-
son is that you cannot add menus to a terminal win-
dow, and a free-floating toolbar would probably not
be too user-friendly. R-1.6.0 and later (Unix versions)
have a couple of stubs to allow redirection of input
and output to Tcl functions, and I have an as yet un-
publishable sketch of the rest.

Finally, there is the issue of writing a graphics
driver. Luke Tierney has a fairly decent solution in
the tkrplot package, but it would be interesting to
incorporate more features of the Tk canvas, which
does allow some manipulations that you don’t have
with standard devices. E.g., you can support sim-
ple interactive graphics by tagging plot elements, so
that you could move or delete them afterwards. Un-
fortunately, the Tk canvas is limited with respect to
clipping and rotation of text, but the Zinc extension
(http://www.openatc.org/zinc) looks promising.

Bibliography

Peter Dalgaard. A primer on the R-Tcl/Tk pack-
age. R News, 1(3):27–31, September 2001. URL
http://CRAN.R-project.org/doc/Rnews/. 25, 26

Peter Dalgaard
Department of Biostatistics
University of Copenhagen, Denmark
p.dalgaard@biostat.ku.dk

R News ISSN 1609-3631

http://www.openatc.org/zinc
http://CRAN.R-project.org/doc/Rnews/
mailto:p.dalgaard@biostat.ku.dk

Vol. 2/3, December 2002 28

Sweave, Part I: Mixing R and LATEX
A short introduction to the Sweave file format and
corresponding R functions

by Friedrich Leisch

This is the first article in a two part mini series on
Sweave (Leisch, 2002), a tool that allows to embed
the R code for complete data analyses in LATEX doc-
uments. In this issue we will introduce the Sweave
file format and R functions to process it, and demon-
strate how to use Sweave as a reporting tool for lit-
erate statistical practice (Rossini, 2001). The compan-
ion article scheduled for the next issue of R News will
concentrate on how to use files in Sweave format to
write primers or manuals for R packages that can be
automatically checked for syntax errors in the code
or inconsistencies between examples and implemen-
tation.

The traditional way of writing a report as part
of a statistical data analysis project uses two sepa-
rate steps: First, the data are analyzed, and after-
wards the results of the analysis (numbers, graphs,
. . .) are used as the basis for a written report. In
larger projects the two steps may be repeated alter-
nately, but the basic procedure remains the same. R
supports this in a number of ways: graphs can be
saved as PDF, EPS, or WMF which in turn can be in-
cluded in LATEX or Word documents. LATEX tables can
be created by specifying the columns and row sepa-
rators in write.table() or using the package xtable.
The basic paradigm is to write the report around the
results of the analysis.

The purpose of Sweave is to create dynamic re-
ports, which can be updated automatically if data or
analysis change. Instead of inserting a prefabricated
graph or table into the report, the master document
contains the R code necessary to obtain it. When run
through R, all data analysis output (tables, graphs,
. . .) is created on the fly and inserted into a final LATEX
document. The report can be automatically updated
if data or analysis change, which allows for truly re-
producible research.

A small example

Sweave source files are regular noweb files (Ramsey,
1998) with some additional syntax that allows con-
trol over the final output. Noweb is a simple liter-
ate programming tool which allows to combine pro-
gram source code and the corresponding documen-
tation into a single file. These consist of a sequence
of code and documentation segments, called chunks.
Different command line programs are used to ex-
tract the code (“tangle”) or typeset documentation to-

gether with the code (“weave”).
A small Sweave file is shown in Figure 1, which

contains four code chunks embedded in a simple
LATEX document. ‘<<...>>=’ at the beginning of a
line marks the start of a code chunk, while a ‘@’ at
the beginning of a line marks the start of a documen-
tation chunk. Sweave translates this into a regular
LATEX document, which in turn can be compiled by
latex to Figure 2.

The code chunks

The main work of Sweave is done on the code
chunks. All code chunks are evaluated by R in the
order they appear in the document1. Within the dou-
ble angle brackets we can specify options that con-
trol how the code and the corresponding output are
rendered in the final document. The first code chunk
(lines 5–8 in Figure 1) declares that neither the R code
(echo=false) nor output (results=hide) shall be in-
cluded. The purpose of this chunk is to initialize R
by loading packages and data, we want to hide these
technical details from the reader.

Let us skip the text in lines 10–19 for the moment
and go directly to the next code chunk in lines 20–22.
It uses the default settings for all options (nothing is
specified within the double angle brackets): both in-
put and output are shown to the user (see Figure 2),
the chunk is rendered such that it emulates the R
console when the code is typed at the prompt. All
input and output are automatically encapsulated in
verbatim-like environments.

The next code chunk can be found at lines 30–31.
It uses the package xtable to pretty-print the coeffi-
cient matrix of the linear regression model. By speci-
fying results=tex we tell Sweave that the output of
this code chunk is regular TEX code and hence needs
no protection by a verbatim environment.

The last code chunk in lines 36–38 is marked as
a figure chunk (fig=true) such that Sweave creates
EPS and PDF files corresponding to the plot created
by the commands in the chunk. Furthermore, an
\includegraphics{} statement is inserted into the
LATEX file. Options width and height are passed to
R’s graphics devices and determine the size of the
figure in the EPS and PDF files.

In line 28 we use \SweaveOpts{echo=false} to
modify the default for option echo to the value of
false for all code chunks following, hence the code
for the last two chunks is not shown in Figure 2.
It has exactly the same effect as if we had included
echo=false within the double angle brackets of the
two chunks.

1There are ways to suppress evaluation or re-use chunks, which is beyond the scope of this article.

R News ISSN 1609-3631

Vol. 2/3, December 2002 29

\documentclass[a4paper]{article}

\begin{document}

5 <<echo=false,results=hide>>=

library(lattice)

library(xtable)

data(cats, package="MASS")

@

10

\section*{The Cats Data}

Consider the \texttt{cats} regression example from Venables \& Ripley

(1997). The data frame contains measurements of heart and body weight

15 of \Sexpr{nrow(cats)} cats (\Sexpr{sum(cats$Sex=="F")} female,

\Sexpr{sum(cats$Sex=="M")} male).

A linear regression model of heart weight by sex and gender can be

fitted in R using the command

20 <<>>=

lm1 = lm(Hwt~Bwt*Sex, data=cats)

lm1

@

Tests for significance of the coefficients are shown in

25 Table~\ref{tab:coef}, a scatter plot including the regression lines is

shown in Figure~\ref{fig:cats}.

\SweaveOpts{echo=false}

30 <<results=tex>>=

xtable(lm1, caption="Linear regression model for cats data.", label="tab:coef")

@

\begin{figure}

35 \centering

<<fig=true,width=12,height=6>>=

lset(col.whitebg())

print(xyplot(Hwt~Bwt|Sex, data=cats, type=c("p", "r")))

@

40 \caption{The cats data from package MASS.}

\label{fig:cats}

\end{figure}

\end{document}

Figure 1: A minimal Sweave file: example.Snw.

R News ISSN 1609-3631

Vol. 2/3, December 2002 30

Estimate Std. Error t value Pr(��� t �)
(Intercept) 2.9813 1.8428 1.62 0.1080

Bwt 2.6364 0.7759 3.40 0.0009
SexM � 4.1654 2.0618 � 2.02 0.0453

Bwt:SexM 1.6763 0.8373 2.00 0.0472

Table 1: Linear regression model for cats data.

Bwt

H
w

t

10

15

20

2 2.5 3 3.5 4

F M

2 2.5 3 3.5 4

Figure 1: The cats data from package MASS.

The Cats Data
Consider the cats regression example from Venables & Ripley (1997). The data
frame contains measurements of heart and body weight of 144 cats (47 female, 97
male).

A linear regression model of heart weight by sex and gender can be fitted in R using
the command

> lm1 = lm(Hwt ~ Bwt * Sex, data = cats)
> lm1

Call:
lm(formula = Hwt ~ Bwt * Sex, data = cats)

Coefficients:
(Intercept) Bwt SexM Bwt:SexM

2.981 2.636 -4.165 1.676

Tests for significance of the coefficients are shown in Table 1, a scatter plot including
the regression lines is shown in Figure 1.

Figure 2: The final document is created by running latex on the intermediate file ‘example.tex’ created by
Sweave("example.Snw").

R News ISSN 1609-3631

Vol. 2/3, December 2002 31

Using S objects in text

Let us now return to the text paragraph in lines 13–
16. It contains three \Sexpr{} statements. Sweave
replaces them by the value of the corresponding S ex-
pression, which should be a simple character string
(or something that can be coerced to a string by
as.character()). In the example we use it to avoid
hard-coding the size of the data set. If the number of
observations changes we do not need to change any-
thing in our Sweave file, we simply re-run Sweave()
and latex and the report is up-to-date.

Writing Sweave files

The Emacs text editor offers a perfect authoring en-
vironment for Sweave, especially for people who al-
ready use Emacs for writing LATEX documents and in-
teracting with R. ESS (Emacs speaks statistics, Rossini
et al., 2003) allows to connect an Sweave file to a run-
ning R process while writing the document. Code
chunks can be sent to R and evaluated using simple
keyboard shortcuts or popup menus. Syntax high-
lighting, automatic indentation and keyboard short-
cuts depend on the location of the pointer: in docu-
mentation chunks Emacs behaves as if editing a stan-
dard LATEX file, when the pointer moves to a code
chunk the mode switches automatically to S pro-
gramming.

However, it is not necessary to use Emacs,
Sweave is a standalone system, the noweb source
files for Sweave can be written using any text editor.
Even the noweb syntax in not a necessity, because
Sweave is highly configurable. Currently there are
two syntaxes available, the noweb syntax described
above and a LATEX-based syntax. In LATEX syntax the
first code chunk of the example looks like

\begin{Scode}{echo=false,results=hide}
library(lattice)
library(xtable)
data(cats, package="MASS")

\end{Scode}

Processing Sweave files

Sweave is contained in the standard R package
tools (R version 1.5.0 or higher). The Sweave file
‘example.Snw’ can be processed using the R com-
mands

> library(tools)

> Sweave("example.Snw")

Writing to file example.tex

Processing code chunks ...

1 : term hide

2 : echo term verbatim

3 : term tex

4 : term verbatim eps pdf

You can now run LaTeX on example.tex

Sweave shows a status line per code chunk indicat-
ing which options are active. The companion com-
mand

R> Stangle("example.Snw")

Writing to file example.R

can be used to extract the code of all chunks into an
R source file.

Resources and summary

The example Sweave file used in this article
can be found as ‘example-3.Snw’ at the Sweave
homepage http://www.ci.tuwien.ac.at/~leisch/
Sweave, where you also find a manual and more ex-
amples.

Sweave is already used for a wide variety of ap-
plications: Reports for medical statistical consulting
that can be updated automatically when new data ar-
rive or data change; lecture notes for statistics classes
with executable examples; and manuals with embed-
ded examples for R packages that can tested as part
of the R CMD check suite, so-called package vignettes.
The last application will be the topic of the second
part of this article in the next issue of R News.

Bibliography
F. Leisch. Sweave: Dynamic generation of statistical re-

ports using literate data analysis. In W. Härdle and
B. Rönz, editors, Compstat 2002 — Proceedings in Com-
putational Statistics, pages 575–580. Physika Verlag, Hei-
delberg, Germany, 2002. URL http://www.ci.tuwien.

ac.at/~leisch/Sweave. ISBN 3-7908-1517-9. 28

N. Ramsey. Noweb man page. University of Virginia, USA,
1998. URL http://www.cs.virginia.edu/~nr/noweb.
version 2.9a. 28

A. Rossini. Literate statistical analysis. In K. Hornik
and F. Leisch, editors, Proceedings of the 2nd Inter-
national Workshop on Distributed Statistical Computing,
March 15-17, 2001, Technische Universität Wien, Vi-
enna, Austria, 2001. URL http://www.ci.tuwien.ac.

at/Conferences/DSC-2001/Proceedings/. ISSN 1609-
395X. 28

A. J. Rossini, R. M. Heiberger, R. Sparapani, M. Mäch-
ler, and K. Hornik. Emacs speaks statistics: A multi-
platform, multi-package development environment for
statistical analysis. Journal of Computational and Graphical
Statistics, 2003. (Accepted for publication). 31

Friedrich Leisch
Department of Statistics & Decision Support Systems
University of Vienna, Austria
leisch@R-project.org

R News ISSN 1609-3631

http://www.ci.tuwien.ac.at/~leisch/Sweave
http://www.ci.tuwien.ac.at/~leisch/Sweave
http://www.ci.tuwien.ac.at/~leisch/Sweave
http://www.ci.tuwien.ac.at/~leisch/Sweave
http://www.cs.virginia.edu/~nr/noweb
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
mailto:leisch@R-project.org

Vol. 2/3, December 2002 32

R Help Desk
Automation of Mathematical Annotation in Plots

Uwe Ligges

Welcome to the R Help Desk

Welcome to the first issue of a regular series of R Help
Desk columns.

As the title of the column suggests, it is intended
to present answers to frequently asked questions re-
lated to R, for example well known questions from
the R mailing lists. More specifically, the intention is
to address problems which cannot be described and
explained completely in a few lines of text, as it is
common in manuals, help pages, typically styled an-
swers on mailing lists, or the R FAQ (Hornik, 2002).

So, on the one hand, articles published in this col-
umn are intended to present solutions to common
problems. On the other hand, to be easy to read by
less experienced R users, the articles should not be
too technical.

Contributions

It is a pleasure to start as the editor of this column.
Like Bill Venables in his first issue of the Program-
mer’s Niche, I would like to take the opportunity to
invite you, the reader, to contribute articles. If you
have any ideas on how to describe solutions to com-
mon programming problems and (more or less) fre-
quently asked questions, please send your contribu-
tions to ligges@statistik.uni-dortmund.de.

Introduction to mathematical anno-
tation in plots

Many users know about R’s capabilities of typeset-
ting mathematical annotation in plots, which were
introduced by Murrell and Ihaka (2000). Related to
this topic, I frequently heard and read sentences like
“Mathematical annotation in plots can be typeset us-
ing a LATEX–like syntax”.

• This statement is partly true for two reasons:
Typesetting is programmed in a way, both in R
and in LATEX. The “keywords” for typesetting
objects like greek letters, fractions etc. are quite
similar.

• The statement is mainly wrong, or at least con-
fusing: The syntax is fortunately more or less
the syntax of the S language with some small
specialities, therefore most R users will know
about its main rules.

Let us start collecting the required information to
typeset formulas in R. We do not need any special
functions to typeset, since the regular mechanisms
used to typeset character strings, like the arguments
main or xlab in plot(), or functions like text() etc.,
are sufficient.

We will not be able to specify mathematical an-
notation as character strings, but we need to spec-
ify them as S expressions or calls — without evalu-
ating them. Some functions to specify unevaluated
S expression, or, more specifically, functions to ma-
nipulate and work with S expressions and calls are
described in detail by Venables and Ripley (2000).
For those interested in more technicalities, the Pro-
grammer’s Niche by Venables (2002) in the previ-
ous newsletter gives some nice insights into the lan-
guage.

Anyway, the most frequently used reference for
our purpose certainly is the help page ?plotmath.

Having collected most of the required informa-
tion, we know that expression() is an appropri-
ate function to specify an unevaluated S expression.
Thus, we can easily produce the following example
(just try it out!).

> plot(0, main =

expression(y == alpha*x[1] + beta*x[2]^2))

The resulting plot will have a rather nice formula in
its main title.

Automation

The question how to replace some variables in formu-
las by their values seems to be more sophisticated, but
is still documented in the examples of ?plotmath.

In particular, the function substitute() is de-
signed to substitute any variables in a call by their
value (from a given environment or list of objects).
As an extension of our first example

> a <- 3.5

> x <- 1:2

> substitute(y == a + alpha*x[1] + beta*x[2]^2,

list(a = a))

will replace the variable a (but not x) in the expres-
sion with its value. Such a mechanism is of special in-
terest for some automated generation of plots, where
the user is not willing to specify the calls to each plot
separately.

Let us construct a small example (you might want
to try it out before looking at the code): Consider you
are working with a bivariate normal distribution, for
which you automatically calculate the mean µ and
the covariance matrix Σx:

µ =
(
µ1
µ2

)
, Σx =

(
σ1 σ3
σ2 σ4

)
.

R News ISSN 1609-3631

ligges@statistik.uni-dortmund.de

Vol. 2/3, December 2002 33

In the same procedure, you want to generate a nice
plot for some presentation, including the formula for
the density of your multivariate normal distribution:

f (x) =
1√

(2π)n det(Σx)
×

exp
(
−1

2
(x−µ)TΣ−1

x (x−µ)
)

.

Further on, suppose you would like to print out
the calculated values of µ and Σx in the same plot.
One possible solution would be the following code.

> ## Let us set up an empty plot:

> plot(1:8, type = "n")

> ## a list of imaginary calculated values:

> param.list <- list(mu1 = 0, mu2 = 0,

s1 = 3, s2 = 2, s3 = 2, s4 = 4)

> ## typeset density of 2-var. normal dist.

> text(1, 6, adj = 0, labels = expression(

f(x) == frac(1, sqrt((2 * pi)^n ~~

det(Sigma[x]))) ~~ exp * bgroup("(",

-frac(1, 2) ~~ (x - mu)^T * Sigma[x]^-1 *

(x - mu), ")")))

> ## typeset concrete values of mu and Sigma

> ## (from param.list):

> text(8, 3, adj = 1, labels = substitute(

"with " * mu == bgroup("(", atop(mu1, mu2),

")") * " , " * Sigma[x] ==

bgroup("(", atop(s1 ~~ s3, s2 ~~ s4), ")"),

param.list))

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

Index

1:
8

f(x) =
1

(2π)n det(Σx)
 exp

−

1

2
 (x − µ)TΣx

−1(x − µ)

with µ =

0

0

 , Σx =

3 2

2 4

Figure 1: Example – Typesetting the density of a bi-
variate normal distribution with substituted values

More automation

From another point of view, substitution might be
desirable for variables (objects) containing expres-
sions, or expression-like strings. Consider you
would like to pass such an object as an argument to
a function, and within that function the title for the
plot shall be constructed from different elements.

The following function will plot the object x ac-
cording to its class, and label the plot with a com-
pounded title. For the labelling two different objects
arg2 (an expression) and arg3 (a character string) are
expected by the function. This particular design of
the function is chosen for illustrating two possible
ways to achieve the typesetting:

> my.foo <- function(x, arg2, arg3, ...){

arg3 <- parse(text = arg3)[[1]]

plot(x, main =

substitute("Formula in \’arg2\’: " * arg2

* "; Formula in \’arg3\’: " * arg3,

list(arg2 = arg2, arg3 = arg3)),

...)

}

> my.foo(1:10, arg2 = quote(alpha[1] == 5),

arg3 = "y == alpha + beta*x + epsilon")

Neither for arg2, nor for arg3, it is possible
to substitute the variable by an object of mode
expression, which can include several objects of
mode call, because substitute() will fail in that
case. Instead, the trick is to pass an object of mode
call. In the first case, arg2 is specified in the func-
tion call using quote(). In the second case, arg3 is
specified as a character string that is parsed (i.e. an
expression is returned) inside the function. In order
to get an object of mode call, only the first element
of the returned list is extracted.

Legends

Another quite frequently asked question related to
mathematical annotation is how to deal with a cou-
ple of formulas at once, as required in legends. If
substitution of variables by values is not necessary,
expression() will still do the trick:

> plot(1:8, type = "n")

> legend(2, 3, expression(alpha^2, x[5], Omega))

But what about substituting? Consider you have cal-
culated values α = 1,β = 2, and want to present
those values within any legend. You will have to sub-
stitute the variables of each legend’s element sepa-
rately before putting them together in an expression.
The latter can be done by do.call() in a somewhat
tricky manner, constructing a call to expression()
with the legend’s elements as its arguments:

> a <- 3; b <- 5

> legend1 <- substitute(alpha == a, list(a = a))

> legend2 <- substitute(beta == b, list(b = b))

> legend(5, 5,

do.call("expression", list(legend1, legend2))

Working intensively with mathematical annota-
tion in plots involves the use of expressions and calls,
thus it is close to the language. Therefore this first is-
sue of the R Help Desk got a bit more technical than it
was intended to be.

I would like to close with a nice citation of Ven-
ables (2002): “Mind Your Language”.

R News ISSN 1609-3631

Vol. 2/3, December 2002 34

Bibliography

K. Hornik (2002). The R FAQ. ISBN 3-901167-51-X,
http://www.ci.tuwien.ac.at/~hornik/R/. 32

P. Murrell and R. Ihaka (2000). An Approach to Pro-
viding Mathematical Annotation in Plots, Journal
of Computational and Graphical Statistics, 9(3): 582–
599. 32

W. N. Venables and B. D. Ripley (2000). S Program-
ming. Springer-Verlag, New York. 32

W. N. Venables (2002). Programmer’s Niche, R
News, 2(2): 24–26, ISSN 1609-3631, http://CRAN.
R-project.org/doc/Rnews/. 32, 33

Uwe Ligges
Fachbereich Statistik, Universität Dortmund, Germany
ligges@statistik.uni-dortmund.de

Changes in R
by the R Core Team

User-visible changes

• The default colour palette now has "grey" in-
stead of "white" in location 8. See palette().

• grid(nx) behaves differently (but the same as
in R versions <= 0.64).

New features

• barplot() has a new argument ‘axis.lty’,
which if set to 1 allows the pre-1.6.0 behaviour
of plotting the axis and tick marks for the cat-
egorical axis. (This was apparently not inten-
tional, but axis() used to ignore lty=0.) The
argument ‘border’ is no longer “not yet used”.

• New operator :: in the grammar, for name
spaces.

• New faster rowsum(), also works on data
frames.

• grep(), sub(), gsub() and regexpr() have a
new argument ‘perl’ which if TRUE uses Perl-
style regexps from PCRE (if installed). New ca-
pabilities option "PCRE" to say if PCRE is avail-
able.

• Preparations for name space support:

– Functions in the base package are now
defined in a name space. As a tem-
porary measure, you can disable this
by defining the environment variable
R_NO_BASE_NAMESPACE.

– UseMethod dispatching now searches for
methods in the environment of the caller
of the generic function rather than the en-
vironment where the generic is defined.

• The objects created in the methods pack-
age to represent classes, generic functions,
method definitions, and inheritance relations
now themselves belong to true classes. In
particular, the "classRepresentation" objects
follow the description in “Programming with
Data” (section 7.6).

• Other additions and changes to the methods
package:

– The function setOldClass() has been
added, following the description on page
450 of “Programming with Data”. Use
it if old-style classes are to be sup-
plied in signatures for setMethod, partic-
ularly if the old-style classes have inheri-
tance. Many of the old-style classes in the
base package should be pre-specified; try
getClass("mlm"), e.g.

– The setGeneric() function applies some
heuristics to warn about possibly erro-
neous generic function definitions. (Be-
fore, obscure bugs could result.)

– The function promptMethods() has been
revised to work better and to provide
aliases for individual methods.

– The behavior of the as() function has
been generalized, in particular with a
‘strict=’ argument, the general goal be-
ing to let simple extensions of classes
pass through in method dispatch and re-
lated computations without altering the
objects. More to make method behavior
more “natural” than for direct use.

– Some inconsistencies following
detach("package:methods") have been
removed, so it should be possible to
detach/re-attach the methods package.

• New methods ([[, print, str) and extended
plot() method (including logical ‘horiz’) for
"dendrogram" class.

R News ISSN 1609-3631

http://www.ci.tuwien.ac.at/~hornik/R/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
mailto:ligges@statistik.uni-dortmund.de

Vol. 2/3, December 2002 35

• sprintf() now checks the agreement between
formats and object types, and handles special
values (NA, Inf, . . .) correctly.

• chol() now uses a tolerance for non-positive-
definiteness and so should give more consis-
tent results across platforms.

• New function agrep() for approximate (fuzzy)
string matching.

• help.search() can now use both approximate
(fuzzy) and regular expression matching. By
default, if the pattern to be matched consists of
only alphanumeric characters, whitespace or a
dash, approximate matching is used.

• axis() has three new optional arguments ‘col’,
‘lty’, and ‘lwd’ all for drawing the axis line and
tick marks.

• Function vcov() (formerly in MASS), a generic
function to return the variance-covariance ma-
trix of the parameter estimates of a fitted
model.

• duplicated() and unique() have methods for
matrices and arrays (based on ideas from Jens
Oehlschlägel).

• Internally memory sizes and counts of cons
cells are now stored in unsigned longs. This
allows memory limits to be set and objects cre-
ated in the range 2-4Gb on 32-bit platforms,
and allows 64-bit platforms to use much larger
amounts of memory.

• Command-line flags to set memory can now
use the suffix ‘G’ for gigabytes. The setting
of maximum vsize is now only limited by the
platform’s address space.

• All warning and error messages are truncated
to a length set by options(warning.length=),
defaulting to 1000. (Previously most (but not
quite all) were truncated at 8192 characters.)

• [dpqr]gamma() check for shape parameter > 0.

• as.POSIX[cl]t() can now convert logical NAs.

• All installed packages (even those shipped
with R) are given a ‘Built’ field in the
‘DESCRIPTION’ file.

• as.data.frame() now coerces logical matrices
into logical columns (rather than factors).

• [[<-.data.frame no longer coerces character
replacement values to factor. This is consistent
with using ‘$’ to replace and with S4.

• library() attempts to detect improperly in-
stalled packages, so as from this version an in-
stalled package must have a ‘DESCRIPTION’
file and that file must have been stamped with
a ‘Built:’ line (which was introduced in 1.2.0).
Under Unix-alikes, the platform is checked
against that used for installation.

• print.factor() has new arguments
‘max.levels’ (with a smart default) and ‘width’.
print.ordered() is no longer needed.

• RNGkind() has an additional option for normal
random generators: "Inversion".

• data.frame() recycles factors and "AsIs" ob-
jects as well as atomic vectors.

• predict.lm() warns if ‘newdata’ is supplied
and the fit was rank-deficient, as this can be
misleading.

• rect() accepts additional graphics parameters
through a ‘...’ argument (in the same way as
polygon).

• strwidth() and strheight() now coerce their
first argument in exactly the same way text()
does, so a wider range of inputs is allowed.

• prompt()’s default and data.frame methods
have a new 3rd argument ‘name’ allowing
them to used more easily in scripts and loops.

• rgb() has a new ‘maxColorValue’ argument,
allowing r,g,b in [0, M], particularly in 0 : 255,
efficiently and non-error-prone.

• summaryRprof() provides the functionality of R
CMD Rprof in R code, though more slowly.

• stop() accepts multiple arguments (which are
concatenated) just as warning() does.

• scan() now throws an error with incorrect
logical input (which was previously taken as
FALSE).

• pdf() now uses PDF not R code for clipping,
which ensures that partially visible text strings
are (partially) shown.

• Each R session uses a per-session temporary
directory which is removed at normal termi-
nation. The directory name is given by the
tempdir() function, and filenames returned by
tempfile() will be within that directory.

• help.start() on Unix now uses a ‘.R’ subdi-
rectory of the per-session temporary directory
and not ‘˜/.R’. A side effect is that ‘˜/.R’ is now
never deleted by R.
This now uses the remote control mechanism
only if the X display is local to the R process (as
otherwise it might use a browser running on an
arbitrary machine).

R News ISSN 1609-3631

Vol. 2/3, December 2002 36

• Very experimental browseEnv() for browsing
objects in an environment.

• cbind() and rbind() used to ignore all zero-
length vectors, an undocumented quirk for
S-compatibility. This caused problems when
combining zero-extent matrices and zero-
length vectors, and now zero-length vectors
are ignored unless the result would have zero
rows/columns.

• read.table(stdin()) will now work.

• plot.spec(x) now also works for other x than
AR and Pgram results.

• New functions La.chol() and La.chol2inv()
for Cholesky decomposition and inverse of
positive definite matrices using Lapack.

• Changes to the tcltk package:

– Added a few “trivial and obviously
missing” functions: tkchooseDirectory,
tkpopup, tkdialog, tkread.

– on Unix systems, the Tcl event loop has
been integrated with R’s own (so that
tkwait.variable() no longer halts up-
dates of plot windows).

– also on Unix, stubs have been created to
divert R’s input and output routines to go
via Tcl commands. (Nothing uses this at
present, but packages might be developed
to take advantage of it.)

– return value from Tcl commands is no
longer invisible. A new print method,
print.tclObj(), has been introduced.

– Tcl variables created by tclVar() are now
explicitly put into Tcl’s global namespace,
removing potential scoping problems.

– The tcltk dynamic library now loads with
local=FALSE since the default had trouble
when loading Tcl extensions (e.g., Tix).

– The tkpager() function had not been up-
dated for the return value change from
1.5.0.

• The bmp(), jpeg() and png() devices can pro-
duce multiple bitmap files, one for each page.
The default filenames have been changed to in-
clude a sequence number.

• New function axTicks() returning tick mark
locations like axis().

• grid() has a more sensible default behavior.
Tick axis alignment only happens when no
numbers of grid cells are specified. New argu-
ments ‘lwd’ and ‘equilogs’; nx/ny = NA for not
drawing, see ?grid.

• installed.packages() has a new argument
‘priority’.

• termplot() uses factor levels rather than
1, 2, 3, . . . for x-axis.

• Workaround for optimization bugs on gcc
3.1/2 on 32-bit Solaris.

• The trace() function has been robustified and
a new function tracingState() added to turn
tracing temporarily on and off.

• New cophenetic() in mva as utility for hierar-
chical clustering.

• p.adjust() has two new methods, ‘Hom-
mel’ and ‘FDR’, contributed by Gordon Smyth
<smyth@wehi.edu.au>.

• stars() now has add and plot arguments.

• Enhancements to mathematical annotation of
plots:

– expressions involving dot(something)
now produce a dot accent above the some-
thing (initial patch from Ben Bolker).

– within an expression, the symbol
‘partialdiff’ is now converted to a par-
tial differential symbol (greek delta).

• smooth.spline() has a new argument ‘nknots’
allowing to set the default number of knots
(when ‘all.knots = FALSE’ as per default).

Build Issues

• Toplevel ‘Makefile’ was missing dependency
of ‘docs’ on ‘R’ (causing parallel makes to go
wrong).

• When building with recommended pack-
ages those were installed into the first path
in R_LIBS, if the environment variable was
present.

Deprecated & defunct

• The assignment operator ‘_’ is deprecated: a
warning is given once per R session.

• machine(), Machine() and Platform() are
deprecated in favour of .Platform$OS.type,
.Machine and .Platform.

• arima0.diag() (package ts) is defunct.

• piechart() is defunct.

• print.ordered() has been removed, so
print.factor() is used.

R News ISSN 1609-3631

Vol. 2/3, December 2002 37

• The global internal variables .Dyn.libs and
.lib.loc are removed in favor of the internal
functions .dynLibs() and .libPaths().

• restart() is deprecated in preparation for
proper exception handling. Use try(), as has
long been recommended.

Documentation changes

• New demo(persp) containing some of the for-
mer example(persp) ones and more.

C-level facilities

• ‘Rversion.h’ is no longer automatically included
by ‘R.h’. Include it explicitly if you need it.

• New entry point R_tmpnam in ‘R ext/Utils.h’.

• The Unix event loop interface has been
changed to facilitate integration with
other loops. R_checkActivity and

R_runHandlers should eventually replace
getSelectedHandler.

Installation changes

• Perl 5.005 or newer is now required.

• R CMD INSTALL is now guaranteed to sort the R
source files in ASCII order.

Utilities

• R CMD check now tests for mis-use on an in-
stalled or binary package, and sets T and F to
NULL when running the examples.

• New function SweaveSyntConv() converts be-
tween Sweave file syntaxes. RweaveLatex()
now gets its prompt from options() and uses
the text width as linebreak cutoff for deparsing
input statements.

See the file ‘NEWS’ in the R distribution for addi-
tional information on bug fixes.

Changes on CRAN
by Kurt Hornik

CRAN packages

CGIwithR Facilities for the use of R to write CGI
scripts. By David Firth.

ISwR Data sets and scripts for text examples and
exercises in P. Dalgaard (2002), “Introductory
Statistics with R”, Springer Verlag. By Peter
Dalgaard.

KMsurv Data sets and functions for Klein and
Moeschberger (1997), “Survival Analysis, Tech-
niques for Censored and Truncated Data”,
Springer. Original by Klein and Moeschberger,
modifications by Jun Yan.

MPV Data sets from the book “Introduction to
Linear Regression Analysis” by D. C. Mont-
gomery, E. A. Peck, and C. G. Vining, 2001,
John Wiley and Sons. By W. J. Braun.

RColorBrewer The package provides palettes for
drawing nice maps shaded according to a vari-
able. By Erich Neuwirth.

SparseM Basic linear algebra for sparse matrices. By
Roger Koenker and Pin Ng.

StatDataML Read and write StatDataML files, al-
pha implementation of the StatDataML pro-
posal. By Torsten Hothorn, Friedrich Leisch,
and David Meyer.

ape Ape provides functions for reading, writing,
and plotting phylogenetic trees in paren-
thetic format (standard Newick format), anal-
yses of comparative data in a phylogenetic
framework, analyses of diversification and
macroevolution, computing distances from al-
lelic and nucleotide data, reading nucleotide
sequences from GenBank via internet, and sev-
eral tools such as Mantel’s test, computation of
minimum spanning tree, or the population pa-
rameter theta based on various approaches. By
Emmanuel Paradis, Korbibian Strimmer, Julien
Claude, Yvonnick Noel, and Ben Bolker.

deal Bayesian networks with continuous and/or
discrete variables can be learned and compared
from data. By Susanne Gammelgaard Bøttcher
and Claus Dethlefsen.

geepack Generalized estimating equations solver
for parameters in mean, scale, and correlation
structures, through mean link, scale link, and
correlation link. Can also handle clustered cat-
egorical responses. By Jun Yan.

R News ISSN 1609-3631

Vol. 2/3, December 2002 38

haplo.score A suite of routines that can be used to
compute score statistics to test associations be-
tween haplotypes and a wide variety of traits,
including binary, ordinal, quantitative, and
Poisson. These methods assume that all sub-
jects are unrelated and that haplotypes are am-
biguous (due to unknown linkage phase of
the genetic markers). The methods provide
several different global and haplotype-specific
tests for association, as well as provide adjust-
ment for non-genetic covariates and compu-
tation of simulation p-values (which may be
needed for sparse data). By Charles M. Row-
land, David E. Tines, and Daniel J. Schaid. R
version translation by Gregory R. Warnes.

mclust1998 Model-based cluster analysis: the 1998
version of MCLUST. By C. Fraley and A. E.
Raftery, Dept. of Statistics, University of Wash-
ington. R port by Ron Wehrens.

msm Functions for fitting continuous-time Markov
multi-state models to categorical processes ob-
served at arbitrary times, optionally with mis-
classified responses, and covariates on transi-
tion or misclassification rates. By Christopher
H. Jackson.

multcomp Multiple comparison procedures for the
one-way layout. By Frank Bretz, Torsten
Hothorn and Peter Westfall.

normix Onedimensional Normal Mixture Models
Classes, for, e.g., density estimation or cluster-
ing algorithms research and teaching; provid-
ing the widely used Marron-Wand densities.
By Martin Mächler.

qvcalc Functions to compute quasi-variances and

associated measures of approximation error.
By David Firth.

relimp Functions to facilitate inference on the rela-
tive importance of predictors in a linear or gen-
eralized linear model. By David Firth.

rgenoud A genetic algorithm plus derivative opti-
mizer. By Walter R. Mebane, Jr., and Jasjeet
Singh Sekhon.

sound Basic functions for dealing with ‘.wav’ files
and sound samples. By Matthias Heymann.

survrec Estimation of survival function for re-
current event data using Peña-Strawderman-
Hollander, Whang-Chang estimators and MLE
estimation under a Gamma Frailty model. For-
tran 77 original by Edsel A Peña and Robert L
Strawderman. Added Fortran routines, R code
and packaging by Juan R González.

CRAN mirrors the R packages from the Omega-
hat project in directory ‘src/contrib/Omegahat’. The
following are recent additions:

RGtkBindingGenerator A meta-package which
generates C and R code to provide bindings to
a Gtk-based library. By Duncan Temple Lang.

RXLisp An interface to call XLisp-Stat functions
from within R, inspired by Forrest Young’s re-
marks about dynamic graphics, XLisp-Stat and
R on R-devel. By Duncan Temple Lang.

Kurt Hornik
Wirtschaftsuniversität Wien, Austria
Technische Universität Wien, Austria
Kurt.Hornik@R-project.org

New Publications
The manual “An Introduction to R” by W. N. Ven-
ables, D. M. Smith and the R Development Core
Team has now been published as a printed book
(ISBN 0-9541617-4-2). It is available worldwide

through the major online bookstores and whole-
salers, at a retail price of $19.95 (£12.95 in UK). Fur-
ther details are available at the publisher’s website
www.network-theory.co.uk.

R News ISSN 1609-3631

mailto:Kurt.Hornik@R-project.org
www.network-theory.co.uk

Vol. 2/3, December 2002 39

gRaphical Models in R
A new initiative within the R project

Steffen L. Lauritzen

What is this?

In September 2002 a small group of people gathered
in Vienna for the brainstorming workshop gR 2002
with the purpose of initiating the development of fa-
cilities in R for graphical modelling. This was made
in response to the facts that:

• graphical models have now been around for a
long time and have shown to have a wide range
of potential applications

• software for graphical models is currently only
available in a large number of specialised pack-
ages, such as BUGS, CoCo, DIGRAM, MIM,
TETRAD, and others.

The time has come to integrate such facilities in gen-
eral software, such as R, with flexible extension and
modification of prepackaged modules. The work-
shop web page can be found on http://www.ci.
tuwien.ac.at/Conferences/gR-2002/.

Summary of workshop

Two rather separate clusters of activities could be
identified. In one, model selection and identification
based on i.i.d. repetitions was the main issue and
in the second, the primary issue was modularity in
modelling and computation for complex patterns of
observations.

Although some effort would be needed to acco-
modate both of these aspects, the aim of the initia-
tive is to do so and get software from both of these
clusters into R.

Further research is needed to make R move from
computing within models to computing directly
with ‘abstract’ models as objects, which seems neces-
sary to represent the natural modularity of graphical
models.

It was decided to take the following simple steps
immediately:

WWW A web-page for the project has been set up at
http://www.R-project.org/gR/.

SIG A special interest group for the gR project
was formed with the associated mailing list
R-sig-gR@lists.r-project.org. See the gR
project web-page for subscription information.

DSC 2003 A session at the Distributed Statistical
Computing workshop, taking place in Vienna
in the period 20-22 March 2003, will be devoted
to gRaphical models and the gR project.

Software Some software for graphical models was
already integrated or is easily integrable in R
and these packages would as quickly as possi-
ble be made available through CRAN. This in-
cludes

• deal for learning Bayesian networks (C.
Dethlefsen and S. G. Bøttcher) is already
available as an R package;

• the extensive program COCO for analysis
of discrete data (J. H. Badsberg);

• an interface making it possible to access
MIM within R (S. Højsgaard);

• GRAPPA, a suite of R functions for prob-
ability propagation (P. Green).

gR 2003 A larger workshop is tentatively planned in
Aalborg, Denmark, in September 2003.

Graph computations A special interest group had
already been formed with the purpose of cre-
ating a module under R for computation with
graphs. Such a module will be extremely valu-
able for the gR project.

Organisation Kurt Hornik will act as main contact
between gR and the R Core team, and Claus
Dethlefsen, Aalborg University, will serve as
the maintainer of the CRAN view for R.

Steffen L. Lauritzen
Aalborg University, Denmark
steffen@math.auc.dk

Recent and Upcoming Events
R at the ICPSR summer program

R played a prominent role at the 2002 ICPSR Sum-
mer Program. Headquartered at the University of

Michigan, the Inter-University Consortium for Polit-
ical and Social Research (ICPSR) is an international
organization of more than 400 colleges and universi-
ties. The Consortium sponsors a variety of services

R News ISSN 1609-3631

http://www.ci.tuwien.ac.at/Conferences/gR-2002/
http://www.ci.tuwien.ac.at/Conferences/gR-2002/
http://www.R-project.org/gR/
mailto:R-sig-gR@lists.r-project.org
mailto:steffen@math.auc.dk

Vol. 2/3, December 2002 40

and activities, including an extensive social-science
data archive and a highly regarded Summer Program
in Quantitative Methods of Social Research.

The eight-week 40th edition of the ICPSR Sum-
mer Program attracted more than 700 participants—
mostly graduate students and faculty in the so-
cial sciences—to Ann Arbor, Michigan to attend 30
courses. These courses ranged from the elementary
to the advanced, most presented in intensive one-
week, all-day classes, and in four-week, two-hours-
per-day classes. Additionally, participants attended
lectures on a variety of statistical topics. More infor-
mation, including course outlines, is available at the
ICPSR web site, http://www.icpsr.umich.edu/.

Computing in the ICPSR Summer Program has
traditionally been eclectic, employing a wide range
of statistical software. This year, several relatively
advanced courses coordinated their use of R. In sup-
port of these courses and to gain more exposure
for R among social scientists, I taught a two-week,
two-hours-per-evening lecture on Statistical Com-
puting in S, which featured R. More than 100 par-
ticipants attended these lectures. R was installed
in the ICPSR Windows-based computer labs, and a
CD/ROM with R for Windows and Windows bina-
ries for all of the packages on CRAN was made avail-
able to participants.

Four-week courses that employed R included
Bayesian Methods for Social and Behavioral Sci-
ences, taught by Jeff Gill of the University of Florida;
Linear, Nonlinear, and Nonparametric Regression,
taught by Bob Andersen, then of Oxford University,
now of the University of Western Ontario; and Max-
imum Likelihood Estimation for Generalized Linear
Models, taught by Charles Franklin of the Univer-
sity of Wisconsin. The combined enrollment of these
classes was more than 100. In addition, Bill Jacoby
of the University of South Carolina gave several lec-
tures on statistical graphics and data visualization
which featured R.

John Fox
McMaster University, Canada
jfox@mcmaster.ca

R featured at JSM

A good time was had at the Joint Statistical Meetings
(JSM) in New York City, August 11–15, 2002. After
several years of dismal locations (who can forget Dal-
las?), this year’s JSM began a series of venues possi-
bly even more interesting than the Meetings: in the
next two years, the JSM will be in San Francisco and
Toronto.

R was featured prominently at the JSM this year.
In session 190, “The future of electronic publica-
tion: Show me ALL the data,” organized by Brian
Yandell and chaired by David Scott, a number of

members of the R core team discussed R and re-
lated tools. Friedrich Leisch described StatDataML,
an XML-based markup language for statistical data
for the more easy transfer of data between programs,
and Sweave, a system for creating statistical reports
that combine text and code such that data analy-
sis output can be created and inserted on the fly.
Robert Gentleman emphasized that all statistical pa-
pers should be accompanied by sufficient data and
software so that the results may be reproduced, a
concept he called a “compendium.” Such a com-
pendium could be created as an R package contain-
ing a Sweave document. The key issue will likely
be in distribution. Kurt Hornik described his experi-
ence in managing the R repository, which now con-
tains over 165 packages. Central to the proper cura-
tion of such a software repository is the development
of tools for automated testing, especially as the core
system is updated. Duncan Temple Lang described
a system for distributing verifiable, self-contained,
annotated computations with interactive facilities so
that readers may examine and explore the content on
their own. The session concluded with a discussion
by James Landwehr concerning the status of the elec-
tronic publication of the ASA’s journals.

Session 349, “R Graphics,” organized and chaired
by Paul Murrell, included discussions of an R inter-
face to OpenGL, the scatterplot3d package, and the
integration of R graphics within Excel. In addition,
Deborah Swayne demonstrated the GGobi data vi-
sualization system, a more modern version of xgobi,
which allows multiple, linked graphical displays.

By my count, at least 22 of the technical sessions
at the JSM included some discussion of the analy-
sis of data from gene expression microarrays. The
importance of the Bioconductor project (initiated by
Robert Gentleman, and consisting largely of R pack-
ages for the analysis of microarray data) for statis-
ticians working in the area was made clear. In par-
ticular, the R package affy (maintained by Rafael
Irizarry), for the analysis of data from Affymetrix
chips, was frequently mentioned.

Karl W. Broman
Johns Hopkins University
kbroman@jhsph.edu

DSC 2003

The third international workshop on Distributed Sta-
tistical Computing (DSC 2003) will take place at the
Technische Universität Wien in Vienna, Austria from
2003-03-20 to 2003-03-22. This workshop will deal
with future directions in (open source) statistical
computing and graphics.

Topics of particular interest include

• Bioinformatics

R News ISSN 1609-3631

http://www.icpsr.umich.edu/
mailto:jfox@mcmaster.ca
mailto:kbroman@jhsph.edu

Vol. 2/3, December 2002 41

• Database Connectivity

• Graphical Modeling

• GUIs and Office Integration

• Resample and Combine Methods

• Spatial Statistics

• Visualization

Emphasis will be given to the R (http:
//www.R-project.org/), Omegahat (http://www.
omegahat.org/), and BioConductor (http://www.
bioconductor.org/) projects. DSC 2003 builds on
the spirit and success of DSC 1999 and 2001, which
were seminal to the further development of R and
Omegahat.

Deadline for registration is 2003-03-14. There will
be a conference fee of EUR 200 for ’early’ registra-
tions made before 2003-02-14, and EUR 250 for regis-
trations made afterwards.

On 2003-03-19 there will be several half-day tuto-
rials, with topics currently including

• An Introduction to BioConductor

• Exploring Genomic Data using R and BioCon-
ductor

• R Graphics

• Writing R Extensions

Fees for each tutorial are EUR 50 (academic) or
EUR 250 (non-academic).

Please contact the organizing committee at dsc-
org@ci.tuwien.ac.at for further information.

Friedrich Leisch
Universität Wien
leisch@R-project.org

Computational and Statistical As-
pects of Microarray Analysis

This one week intensive school is intended to give
a clear view of current statistical and computational
problems linked to microarray data along with some
solutions. This self-contained course will touch on
many aspects of genome biology as it applies to mi-
croarray analysis. Topics include preprocessing, esti-
mating gene expression levels, microarray data and
hybridization, experimental design, dimension re-
duction and pattern recognition techniques includ-
ing boosting, bagging and other recent statistical
techniques for microarray data analysis.

The course is primarily intended for PhD stu-
dents and researchers in the areas of Statistics, Biol-
ogy and related fields. A small background on data
analysis is required. The course is computationally
intensive and laboratory sessions are associated with
methodology ones.

It will take place at the University of Milan, Italy,
from 2003-05-26 to 2003-05-30 with two morning
sessions on methodology and computer labs in the
afternoon of each day. The course will be given
by Anestis Antoniadis (Universite Joseph Fourier,
Grenoble, France) and Robert Gentleman (Harvard
School of Public Health, Boston, USA). Further infor-
mation is available at http://www.eco-dip.unimi.
it/marray.

Stefano Iacus
University of Milan
stefano.iacus@unimi.it

Editor-in-Chief:
Kurt Hornik
Institut für Statistik und Wahrscheinlichkeitstheorie
Technische Universität Wien
Wiedner Hauptstraße 8-10/1071
A-1040 Wien, Austria

Editorial Board:
Friedrich Leisch and Thomas Lumley.

Editor Programmer’s Niche:
Bill Venables

Editor Help Desk:
Uwe Ligges

Email of editors and editorial board:
firstname.lastname @R-project.org

R News is a publication of the R Foundation for Sta-
tistical Computing, communications regarding this
publication should be addressed to the editors. All
articles are copyrighted by the respective authors.
Please send submissions to regular columns to the
respective column editor, all other submissions to
Kurt Hornik, Friedrich Leisch, or Thomas Lumley
(more detailed submission instructions can be found
on the R homepage).

R Project Homepage:
http://www.R-project.org/

This newsletter is available online at
http://CRAN.R-project.org/doc/Rnews/

R News ISSN 1609-3631

http://www.R-project.org/
http://www.R-project.org/
http://www.omegahat.org/
http://www.omegahat.org/
http://www.bioconductor.org/
http://www.bioconductor.org/
mailto:leisch@R-project.org
http://www.eco-dip.unimi.it/marray
http://www.eco-dip.unimi.it/marray
mailto:stefano.iacus@unimi.it
http://www.R-project.org/
http://CRAN.R-project.org/doc/Rnews/

	Editorial
	Resampling Methods in R: The boot Package
	Introduction
	The main bootstrap function
	Analysis of bootstrap output
	Resampling censored data
	Resampling time series
	Further comments

	Diagnostic Checking in Regression Relationships
	Introduction
	U.S. macroeconomic data
	The mandible data
	Conclusions

	Delayed Data Packages
	Data storage in R and S-Plus
	More examples
	Under the hood

	geepack: Yet Another Package for Generalized Estimating Equations
	Introduction
	Features
	An example: Epileptic seizures
	Future developments

	On Multiple Comparisons in R
	Description
	Details
	Example
	Graphical Representation
	Conclusion

	Classification and Regression by randomForest
	Introduction
	The algorithm
	Extra information from Random Forests

	Usage in R
	A classification example
	A regression example
	An unsupervised learning example

	Some notes for practical use

	Some Strategies for Dealing with Genomic Data
	Introduction
	Issues for consideration
	The design
	Discussion

	Changes to the R-Tcl/Tk package
	Introduction
	Control variable changes
	Tcl objects
	Return values
	Callback changes
	New version of the script widget
	Future developments

	Sweave, Part I: Mixing R and LaTeX
	A small example
	The code chunks
	Using S objects in text

	Writing Sweave files
	Processing Sweave files
	Resources and summary

	R Help Desk
	Welcome to the R Help Desk
	Contributions

	Introduction to mathematical annotation in plots
	Automation
	More automation
	Legends

	Changes in R
	User-visible changes
	New features
	Build Issues
	Deprecated & defunct
	Documentation changes
	C-level facilities
	Installation changes
	Utilities

	Changes on CRAN
	New Publications
	gRaphical Models in R
	Recent and Upcoming Events
	R at the ICPSR summer program
	R featured at JSM
	DSC 2003
	Computational and Statistical Aspects of Microarray Analysis

