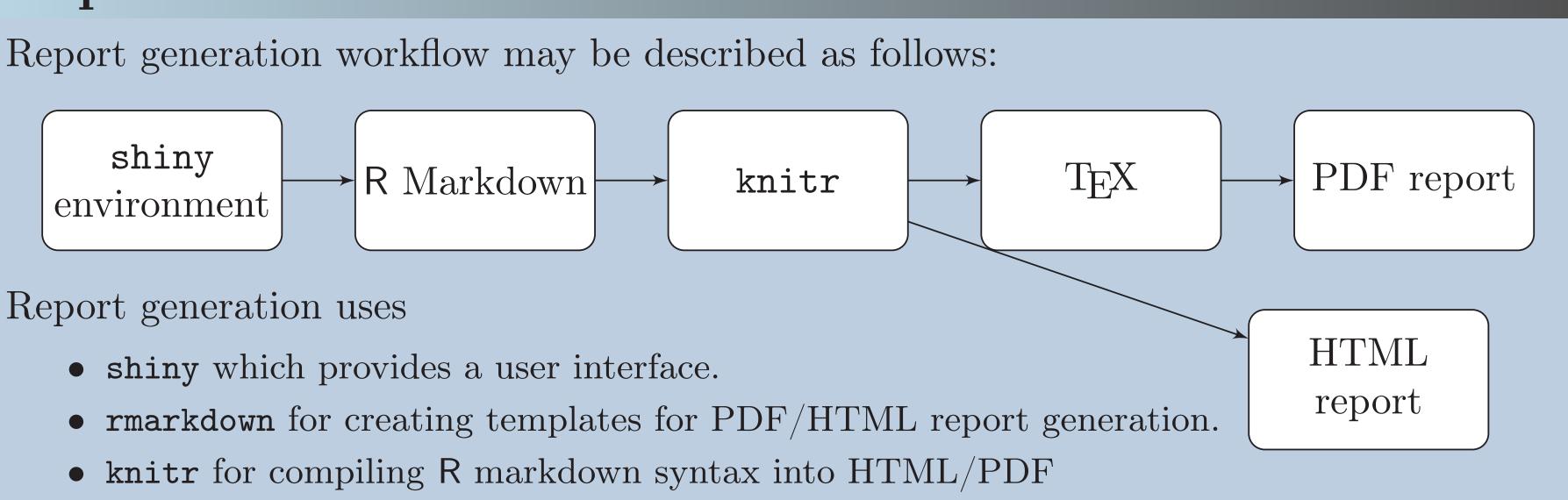
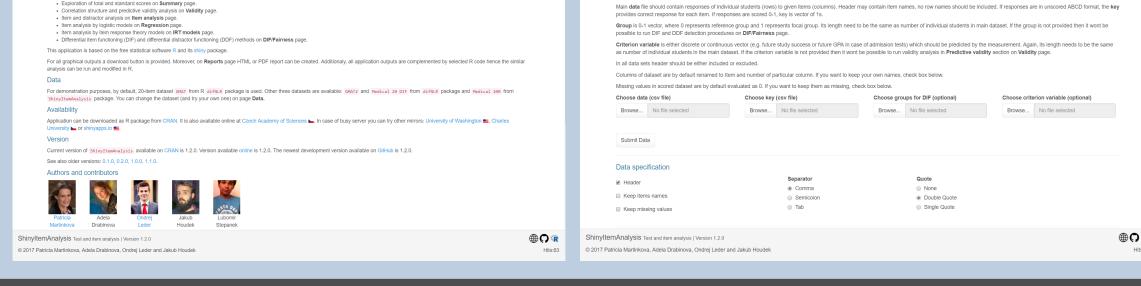
Automatic generation of item analysis report in ShinyItemAnalysis using R Markdown

Jakub Houdek^{1,2}, Adéla Drabinová², Lubomír Štěpánek¹, Patrícia Martinková² houdek@forsaga.net, adela.drabinova@gmail.com, lubomir.stepanek@lf1.cuni.cz, martinkova@cs.cas.cz ¹Faculty of Informatics and Statistics, University of Economics, Prague, ²Department of Statistical Modelling, Institute of Computer Science, Czech Academy of Sciences


ShinyItemAnalysis

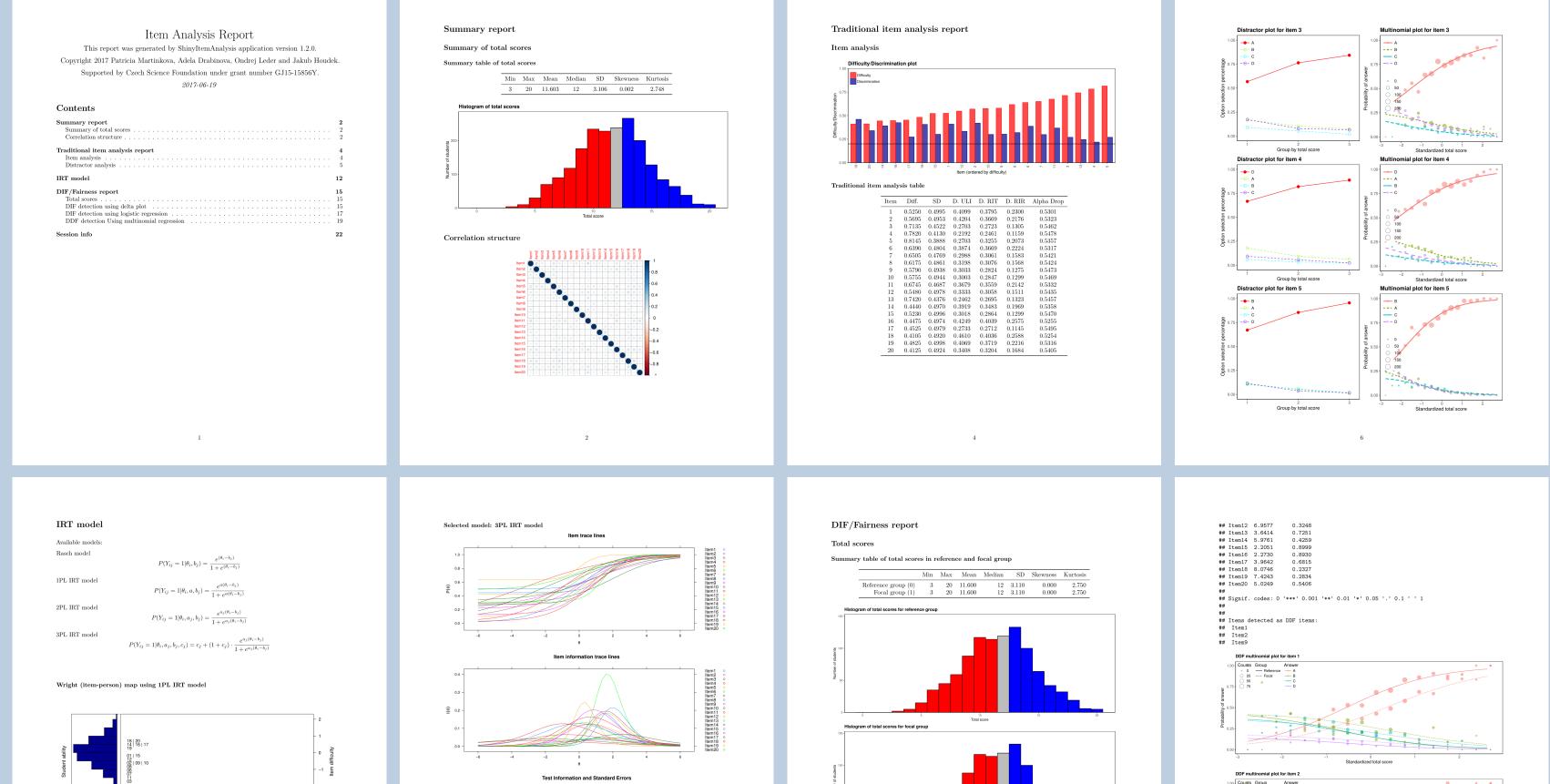
ShinyItemAnalysis is an R package and an online shiny application for psychometric analysis of educational tests and their items. It covers broad range of methods and it aims to be a simple tool for routine analysis of tests and for teaching psychometric concepts with R.

ShinyItemAnalysis is available online at


	h	tt	ps	5:/	/s	hi	ny	.c	s.ca	IS.C	CZ	z/S	hin	.y	It	5 e 1	<u>m</u> .	Ar		lys	is]
S Test and item analysis	About Data		Validity -		Regression -			Reports	References		Shi	nyItemAnalysi	S Test and item analysis		Data		Validity 🗸	Item analysis 👻	Regression •	 IRT models - 		Repo
vsis provides analysis of edu	ucational tests (such	n as admission te	ests) and their i	items including:								Upload your	own datasets									

Report Generation

• T_EX for creating PDF reports (latest distribution of T_EX is needed).

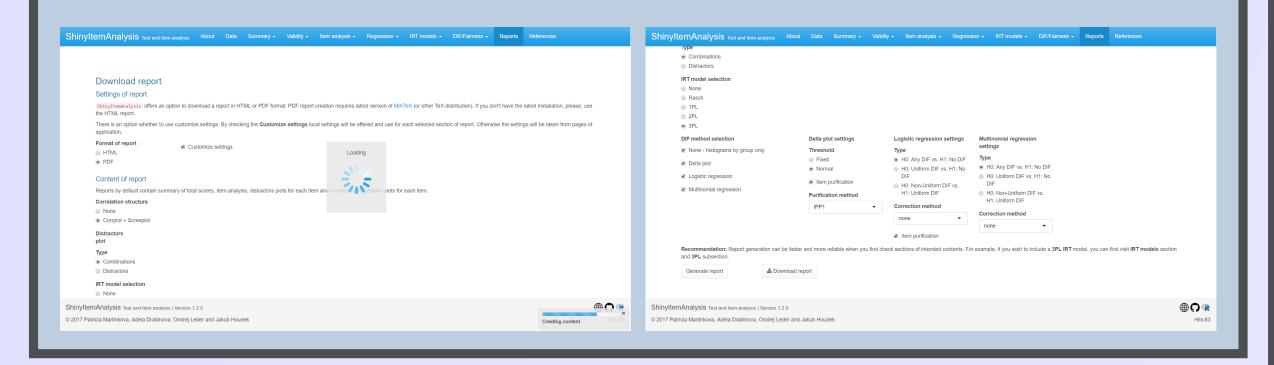

Reports

To support routine usage of advance methods in test development, ShinyItemAnalysis offers possibility to upload data for analysis, and to generate PDF/HTML reports. Reports include:

- Summary statistics of given dataset
- Traditional item analysis with estimates of item difficulty and discrimination, distractor analysis
- Multinomial plots as application of regression models on item data
- IRT models: User can select between Rasch, 1PL, 2PL and 3PL models.
- Analysis of Differential Item Functioning (DIF) and Differential Distractor Functioning (DDF) offering delta

Report Examples

Below, report example is presented with dataset GMAT (Martinková et al., 2017). This dataset was generated to demonstrate the theoretical possibility of exactly equal distribution of total scores in groups (7th page), while DIF is still present (8th page).



plot, logistic regression and multinomial regression.

Download Options

Report generation section provides user with a variety of options for report generation:

- selection of format: HTML vs. PDF
- (for local use, PDF report needs installation of $T_{E}X$)
- selection of available methods
- (reduces time when some analyses are not needed)
- customization of settings in selected methods

σ	Tes Information and Standard Errors	## without item purificat ##	-	DProlitional potential 2
Dataset	# items	Local [s]	ICS [s]	shinyapps.io [s]
GMAT	20	60 + 44	46+31	35+29
GMAT2	20	51+33	27+31	20+26
Medical 20 DIF	20	137+37	91+39	64+28
Medical 100	100	800+139	725+46	$480+\infty$

Discussion and Conclusion

We have met following issues and challenges during the development:

0	0 0 1						
Issue	Our solution	Optimal solution					
Inconsistency of graphical out- puts of various plotting devices, such as graphics, ggplot2 and spe- cific plotting techniques of various packages used during analyses.	Usage of different plot saving functions such as ggsave() or generating plots in R Markdown template	Usage of universal plot saving function for all plotting packages					
R Markdown cannot contain shiny objects.	Creation of additional shiny objects just for the needs of R Mark- down and connecting it with the template via render() function	Adding a universal functionality for ex- tracting objects from shiny environments					
Report generation requires quite powerful hardware and a lot of processing time.	Splitting the process in shiny environment into generation and download	Implementation of multicore processing, for example					
Server implementation is impractical	Taking care of server processing time via splitting report generation and download	Using a powerful server					
Lutomatic report generation of uploaded datasets is a useful complement for shiny pplications which may boost usage of advanced methods in routine analyses.							

Visit related talks:

Drabinová A. difNLR: Detection of potentional gender/minority bias with extensions of logistic regression (Thursday 11:18AM, 4.01 Wild Gallery)

Learn more / Try it out!

Martinková P. Teaching psychometrics and analysing educational tests with ShinyItemAnalysis (Friday 11:00 AM, Plenary)

This research was supported by Czech Science Foundation grant GJ15-15856Y

References

- Allaire, J., Cheng, J., Xie, Y., McPherson, J., Chang, W., Allen, J., Wickham, H., Atkins, A., and Hyndman, R. (2016). rmarkdown: Dynamic Documents for R. R package version 1.3.
- Chang, W., Cheng, J., Allaire, J., Xie, Y., and McPherson, J. (2017). shiny: Web Application Framework for R. R package version 1.0.3.
- Martinkova, P., Drabinova, A., Leder, O., and Houdek, J. (2017). ShinyItemAnalysis: Test and item analysis via shiny. R package version 1.2.0.
- Martinková, P., Drabinová, A., Liaw, Y.-L., Sanders, E. A., McFarland, J. L., and Price, R. M. (2017). Checking equity: Why differential item functioning analysis should be a routine part of developing conceptual assessments. *CBE-Life Sciences Education*, 16(2).