CHMM: an R package for coupled Hidden Markov Models

Julie Aubert (1), Xiaoqiang Wang (1,2), Emilie Lebarbier (1) \& Stéphane Robin (1) AgroParisTech (1) UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France. (2) School of Mathematics and Statistics, Shandong University, Weihai, China.

CNV detection of a simulated sample.
Coupled Hidden Markov Models: graphical representation [2]

Notations

- $Y_{i, t}$: observation
- $Z_{i, t}$: hidden status
- $s_{i j}$: similarity between i and j

within series dependence:

$\left(Z_{i, t-1}, Z_{i, t}\right)$ are Markov-dependent

between series dependence:

$\forall(i \neq j),\left(Z_{i, t}, Z_{j, t}\right)$ are not independent

Coupled Hidden Markov Models (CHMM): model

- Observed process:

$$
\left(Y_{i, t} \mid Z_{i, t}=q\right) \sim \mathcal{N}\left(\mu_{q}, \sigma^{2}\right)
$$

where μ_{q} is the mean value in the state $q(q=1, \cdots, Q)$.

- Joint hidden process: $\left(Z_{t}\right)_{t}$, with $Z_{t}=\left(Z_{1, t}, \cdots, Z_{I, t}\right): Q^{I}$ states.

$$
P\left(Z_{t}=\ell \mid Z_{t-1}=k\right) \propto W_{\ell} \prod \pi_{k_{i}, \ell_{i}}
$$

where
$\triangleright \pi$ is a $Q \times Q$ transition matrix
\triangleright dependency relationships among individuals is encoded in $W_{\ell}=\prod_{i, j \neq i} \omega^{S_{i j 1} 1}\left\{q_{j}^{\ell} \neq q_{i}^{\ell}\right\}$ with $\omega<1$
$\triangleright \omega=1$: independent case. Equivalent to independent HMM (iHMM).

Variational inference $[1,2]$

When I (the number of individuals) is large, $P(\mathbf{Z} \mid \mathbf{Y})$ is not computable.
Mean-field approximation

$$
\tilde{P}(Z)=\arg \min _{\tilde{P} \in \mathcal{P}} \mathcal{K} \mathcal{L}[\tilde{P}(Z) ; P(Z \mid Y)]
$$

where $\mathcal{P}=\left\{\tilde{P}(Z) \mid \tilde{P}(Z) \propto \prod_{i} \prod_{t} \tilde{P}\left(Z_{i, t} \mid Z_{i, t-1}\right)\right\}$ (independent Markov chains)
Forward part of the VE-step
Let denote $p_{i t q r}=\tilde{P}\left(Z_{i, t}=r \mid Z_{i, t-1}=q\right)$, then we obtain a set of fixed point equations for $p_{i t q r}$:

$$
p_{i t q r} \propto \pi_{q r} f\left(Y_{i, t}, \mu_{r}, \sigma^{2}\right) \times \omega^{\sum_{j \neq i} s_{i j}\left(1-\mathbb{E}_{\tilde{p}} Z_{j, t}^{r}\right)}
$$

References and acknowledgements

[1] Ghahramani, Z. and Jordan, M. (1997). Machine learning, 29(2-3):245-273
2] Wang, X. et al. (2017). Submitted.
3] Daudin, J.-J., Picard, F. and Robin, S. (2008). Stat. Comput. 18, 173-83.
his work was supported by the CNV-Maize program funded by the french National Research Agency (ANR-10-GENM-104) and France Agrimer
(11000415).

Selection criterion [2,3]

$$
\widehat{Q}=\arg \max _{Q} \mathcal{J}_{Q}(Y, \widehat{\theta}, \tilde{P})-[1+Q(Q-1)] \log (I T) / 2
$$

where $\mathcal{J}_{Q}(Y, \widehat{\theta}, \tilde{P})$ is the maximized lower bound of the Q-state model.

Simulation study

Runtime (in second), Weak dependency, $\sigma=1, I$: number of lines

I	HMM-EM	CHMM-VEM	CHMM-EM
2	0.8	0.4	2.0
3	1.1	0.5	11.2
4	1.2	0.6	79.4
5	1.6	0.8	920.2

Classification accuracy (\%) for $I=3$

Coupled HMM applied to the detection of CNV in the maize

Classification accuracy (validated 58 Fv2 alterations)

\boldsymbol{I}	1	6	49	80	153	336
$\bar{s}_{\boldsymbol{I}}$	1.0	0.7	0.7	0.7	0.6	0.6
FPR(\%)	12.6	10.4	10.0	9.3	8.9	8.9
FNR(\%)	24.1	24.1	24.1	25.9	25.9	25.9

\bar{s}_{I} : mean kinship within the panel.
The joint analysis with correlated lines reduces the proportion of falsely detected alterations

CHMM package

library(CHMM)
data(toyexample)
\# Variational inference of a coupled hidden Markov Chains
resCHMM <- coupledHMM $(X=$ toydata, nb.states $=3, S=$ cor(toystatus), omega.list $=c(0.3,0.5,0.7,0.9))$
\# Breakpoints positions and status of segments
info <- clusterseg(resCHMM\$status)

sample	posbegin posend status		
1 Sample_5	1	17	2
2 Sample_5	18	30	1
3 Sample_5	31	66	2

Conclusions

A model and associated inference for the detection of CNV taken into account dependency.

- Selection criterion
- Heuristic for choosing the value of the parameter $\boldsymbol{\omega}$.

CHMM R package available from the CRAN.

