
Zero-overhead	R	and	C/C++	integra3on	with	FastR	
Lukas	Stadler,	Štěpán	Šindelář,	Florian	Angerer	

C	and	C++	are	frequently	used	to	improve	performance	of	R	applica3ons	and	packages.	 
While	this	is	usually	not	necessary	when	using	FastR,	because	it	can	run	R	code	at	near-na3ve	

performance,	there	is	a	large	corpus	of	exis3ng	code	that	implements	cri3cal	pieces	of	 
func3onality	in	na3ve	code.	Like	other	alterna3ve	implementa3ons	of	R,	FastR	needs	to	 

simulate	the	R	na3ve	API,	which	is	a	complex	API	that	exposes	many	implementa3on	details.	 
This	simula3on	usually	incurs	significant	effort	and	performance	overhead,	and	there	is	a	 

compila3on	and	op3miza3on	barrier	between	languages.

FastR	uses	the	Truffle	framework	and	the	 
Sulong	engine	to	run	na3ve	code,	available	as	
LLVM	bitcode,	inside	the	op3miza3on	scope	of	 

the	polyglot	Truffle	environment.  
This	allows	the	Graal	compiler	to	perform	its	 
advanced	compiler	op3miza3ons	for	both	  
languages	and	across	both	languages.

The	Problem The	Solu3on

FastR	is	an	alterna3ve	implementa3on	of	
the	R	language,	running	on	top	of	a	Java	
Virtual	Machine.	It	is	designed	to	be	a	

drop-in	replacement	that	executes	exist-
ing	R	code	at	unparalleled	peak	perfor-
mance.	It	also	provides	access	to	the	

polyglot	Truffle	ecosystem,	so	that	it	can	
interact	efficiently	with	other	languages	

such	as	JavaScript	and	Ruby.

FastR

Sulong	is	an	interpreter	for	LLVM	IR	code	
that	can	execute	C/C++,	Fortran,	and	oth-
er	LLVM-supported	languages	on	a	Java	
Virtual	Machine.	FastR	can	use	Sulong	to	
execute	code	wriXen	in	these	languages	
within	the	same	ecosystem,	compile	them	
using	the	same	compiler,	and	op3mize	
them	as	a	single	unit	for	maximum	per-

formance.

Sulong

Truffle	is	a	framework	for	implemen3ng	
languages	as	simple	interpreters.	It	pro-
vides	the	basic	founda3on	for	building		
abstract-syntax-tree	(AST)	interpreters	

that	perform	self-op3miza3on	at	run3me.		
The	included	TruffleDSL	provides	a	conve-
nient	way	to	express	such	op3miza3ons.  

Truffle	is	developed	and	maintained	by	
Oracle	Labs	and	the	Ins3tute	for	System	

So]ware	of	the	Johannes	Kepler		
University	Linz.

Truffle

Graal	is	a	dynamic	compiler	that	trans-
forms	Java	bytecode	into	executable	 
machine	code.	It	is	wriXen	in	Java,	and	 
integrates	into	Java	Virtual	Machines	like	
the	HotSpot	JVM.	It	has	a	focus	on	high	
peak	performance,	maintainability	and	 

extensibility.	

Together	with	the	Graal	compiler,	Truffle	
is	capable	of	just-in-3me	compiling	 
programs	running	on	top	of	it	to	  
na3ve	code	for	efficient	execu3on.

Graal

double fun(double x, double y, 
 double z) {
 return sqrt(x) + pow(y, z);
}

function(a, b, c) {
 foo(a)
 fun(b, 1, c)
}

+

sqrt

x

pow

zy

+

sqrt

x

pow

zy

{

foo

a

fun

cb 1

{

foo

a

fun

cb 1

{

foo

a

+

sqrt pow

cb 1

{

foo

a

+

sqrt pow

cb 1

{

foo

a

+

sqrt pow

cb 1

parse	into	ASTs

op3mize	ASTs  
(during	execu3on)

inlining

compile	to	na3ve	code

C/C++/Fortran/…R

3Oracle Signature Logo Guidelines

INTRODUCTION

The Oracle Signature is the most visible and recognizable element of Oracle’s

corporate identity. It should always be the dominant element of the graphic identity.

It is illegal for anyone to use our corporate signature in any manner that has not

been approved.

The Oracle Signature is made up of uniquely designed characters. These characters

are designed to be used only in this logo—they are not a standard typeface.

Therefore, you should not attempt to create new words by imitating the characters

in the Oracle Signature.

In the People’s Republic of China, we use the Jiaguwen Signature shown below.

This signature is to be used only in Greater China—no exceptions.

ORACLE SIGNATURE ORACLE SIGNATURE— JIAGUWEN

