An implementation of the SAEM algorithm for left-censored data

Raphaël Coudret and Jan Serroyen (Open Analytics and Janssen Pharmaceutica)

The useR! Conference, June 30 – July 3, 2015, Aalborg, Denmark

Models with left-censored observations

Comparison between SAEM and EM

Future work

Goal: Find the maximum likelihood estimator for some unknown vector of parameters θ .

Problem: The likelihood function $(\theta^* \mapsto f_{\mathbf{Y}|\theta=\theta^*}(y))$ can be difficult to write.

Problem: The expectation of the EM algorithm can be difficult to write.

Let ${\boldsymbol{\mathsf{Z}}}$ be some unobserved random vector.

The SAEM algorithm:

► generates *z* from the distribution of $(\mathbf{Z}|\mathbf{Y} = y, \theta = \widehat{\theta}_m)$, → S step

• finds
$$f_{\mathbf{Y},\mathbf{Z}|\theta=\theta^{\star}}(y,z)$$
,

• produces a function to optimize leading to $\hat{\theta}_{m+1}$.

Delyon, B., Lavielle, M. and Moulines, E. (1999). Convergence of a stochastic approximation version of the EM algorithm. *The Annals of Statistics*, 27(1), 94–128.

SAEM for left-censored data

R. Coudret, J. Serroyen

An important requirement for the SAEM algorithm to have pleasing properties is, for $\mathbf{Y}, \mathbf{Z}|\theta = \theta^{\star}$, to be in the curved exponential family.

This means that:

$$f_{\mathbf{Y},\mathbf{Z}|\theta=\theta^{\star}}(y,z)=e^{-\Lambda(\theta^{\star})+\langle S(y,z),\Phi(\theta^{\star})
angle},$$

where S is the minimal sufficient statistic of $(\mathbf{Y}', \mathbf{Z}')'$.

In the saemCensoring package, there is an implementation of the SAEM algorithm:

- handling models with left-censored observations,
- that can be compared with the EM algorithm, for a particular model,
- capable of ending after each iteration.

Models with left-censored observations

We consider the following model:

- ▶ $\mu \in \mathbb{R}^{p}$,
- Ω is a $p \times p$ diagonal positive-definite matrix,
- $\begin{aligned} & \phi_i \sim \mathcal{N}(\mu, \Omega), \\ & \varepsilon_{i,j} \sim \mathcal{N}(0, \sigma^2), \\ & y_{i,j}^{cens} = h(\phi_i, t_{i,j}) + \varepsilon_{i,j}, \\ & y_{i,j}^{obs} = y_{i,j}^{cens} \, \mathbb{I}_{\{y_{i,j}^{cens} \geq LOQ\}} + LOQ \, \mathbb{I}_{\{y_{i,j}^{cens} < LOQ\}}, \\ & \text{all } \phi_i \text{'s and } \varepsilon_{i,i} \text{'s are independent.} \end{aligned}$

Models with left-censored observations

We then choose:

$$\theta = (\mu', \omega_1^2, \dots, \omega_p^2, \sigma^2)',$$

where

$$\Omega = \begin{pmatrix} \omega_1^2 & 0 & \cdots & 0 \\ 0 & \omega_2^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \omega_\rho^2 \end{pmatrix}$$

We also choose:

$$\mathbf{Y} = (y_{1,1}^{obs}, \ldots, y_{N,n_N}^{obs})',$$

and

$$\mathbf{Z} = (\phi'_1, \dots, \phi'_N, y_{1,1}^{cens}, \dots, y_{N,n_N}^{cens})'.$$

•

Models with left-censored observations

We have that $\mathbf{Y},\mathbf{Z}|\boldsymbol{\theta}=\boldsymbol{\theta}^{\star}$ is in the curved exponential family.

No assumption about the function h.

BUT

We did not verify all the assumptions in Delyon et al. (1999).

Coudret, R. (2014).

Notes on "Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model". Technical report, Open Analytics.

Samson, A., Lavielle, M. and Mentré F. (2006). Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model.

Computational Statistics & Data Analysis, 51, 1562–1574.

SAEM for left-censored data

R. Coudret, J. Serroyen

In the model with left-censored observations, if we choose p = 1, $LOQ = -\infty$, and:

$$h(\phi_i, t_{i,j}) = \mathbb{I}_{\{\phi_i > 1\}} - \mathbb{I}_{\{\phi_i \leq -1\}},$$

we can write the equations of:

$$f_{\mathbf{Y}|\theta=\theta^{\star}}(y) \quad \text{and} \quad f_{\phi_1,\dots,\phi_N|\mathbf{Y}=y,\theta=\theta^{\star}}(u_1',\dots,u_N'),$$

and observe the behaviour of both the SAEM and the EM algorithm.

For the S step, Samson et al. (2006) proposed to generate an observation from the distribution of:

$$\boldsymbol{\psi} = \Big((\phi_1', \dots, \phi_N')' | \mathbf{Y} = \boldsymbol{y}, \boldsymbol{\theta} = \boldsymbol{\theta}^{\star} \Big),$$

using a Metropolis-Hastings algorithm.

Since we know the density of this random vector, we can compare it with the estimated density computed from the points simulated using the Metropolis-Hastings algorithm.

Figure: density of ψ (black) and estimate of this density using 900 points created with the function generateMissingData (red).

While running, the saem function can show successive estimates of a parameter in θ .

If the RGtk2 package is correctly installed, a button allows the user to stop neatly the SAEM algorithm after the current iteration. \rightarrow Quick results when the estimates do not change.

Possible future features:

- ▶ being able to set values for $\hat{\theta}_m$ when the function is running, → explore regions of the parameter space.
- show several figures, for all parameters in $\hat{\theta}_m$.

We chose N = 10, $n_i = 10$ for all $i \in \mathbb{N}_N^*$ and simulated data using $\theta = (3, 4, 0.25)'$.

We launched 100 times the SAEM and the EM algorithms with this data-set, and we found the following values of $log\left(f_{\mathbf{Y}|\theta=\widehat{\theta}_{m}}(y)\right)$:

- EM algorithm: -76.4023 ± 10^{-4} ,
- SAEM algorithm: -76.4006 ± 10^{-4} .

Future work

Interesting tasks that remain to be completed:

- verify all the assumptions in Delyon et al. (1999),
 - ightarrow study the consequences for *h*,
 - \rightarrow determine whether S has to be the minimal sufficient statistic,
- compare the saemCensoring package with other implementations,
- find what happens when Ω is not diagonal,
- improve the graphical user interface.