Development and validation of statistical models for occupancy detection in an office

Luis Candanedo, PhD Senior Researcher

Why occupancy detection in Buildings?

ENERGY SAVINGS

30 to 42% energy savings with appropriate management of Heating, Ventilation and Air Conditioning Systems HVAC with occupancy detection (Dong et al, 2009; Erickson et al, 2011)

- Security
- Occupant behavior

Typical approach for Sensing Occupancy

Passive Infrared Sensor (PIR)

Estimated Accuracy ≈ 97-98%

Sensor may be triggered by air currents or fail

to detect presence when occupant does not move.

Digital Cameras

Privacy concerns

Alternative Solution (to use the already installed sensors)

- Many HVAC monitoring systems already measure :
 - Temperature
 - Humidity + calculated humidity Ratio f(T,RH,pressure)
 - CO₂
 - Light

Experimental data collection

Location of the sensors

5.85m x 3.50m x 3.53 m

Sample of 1 picture manually tagged

1 Day Profiles

Pairs Plot. Some Show Good Separation Status!

3 Data Sets

Data set	Number of	Comment
	Observations	
Training	8143 of 7	Measurements taken mostly with the door
	variables	closed during occupied status
Testing 1	2665 of 7	Measurements taken mostly with the door
	variables	closed during occupied status
Testing 2	9752 of 7	Measurements taken mostly with the door open
	variables	during occupied status

Trained models with CART, Random Forests, GBM and LDA

Model	Parameters	Accuracy	Accuracy	
		Training	Testing 1	Testing 2
Random Forest	T, φ , Light,CO ₂ ,W	100.00%	95.05%	97.16%
GBM	T, φ , Light,CO ₂ ,W	99.62%	94.26%	95.44%
CART	T, φ , Light,CO ₂ ,W	99.30%	95.57%	96.47%
LDA	T, φ , Light,CO ₂ ,W	98.80%	97.90%	98.76%
Random Forest	T, φ , CO ₂ , W	99.98%	69.31%	32.68%
GBM	T, φ , CO ₂ , W	97.80%	87.35%	46.02%
CART	T, φ , CO ₂ , W	93.05%	84.65%	78.96%
LDA	T, φ , CO ₂ , W	91.91%	85.33%	73.77%

Model	Parameters	Accuracy	Accuracy	
		Training	Testing 1	Testing 2
Random Forest	arphi, Light	99.96%	92.35%	94.36%
GBM	arphi, Light	99.21%	94.71%	99.01%
CART	$oldsymbol{arphi}$, Light	98.86%	97.86%	99.31%
LDA	arphi, Light	96.78%	97.78%	97.79%
Random Forest	Light, CO ₂	99.95%	92.61%	97.41%
GBM	Light, CO ₂	99.14%	94.26%	98.81%
CART	Light, CO ₂	98.89%	97.82%	99.31%
LDA	Light, CO ₂	97.53%	97.86%	97.86%

CART Model

Conclusions

- High Accuracies with CART, LDA and Random Forest (95-99%)
- Using all the predictors can reduce Random Forest Performance
- Light is an important parameter to measure
- The following Variable Pairs predict the occupancy accurately
 - Temperature and Light LDA (97.9-97.79%) test sets
 - Light and CO2 LDA (97.86%)
 - Light and Humidity LDA (97.78%)
- A light sensor costs around \$6

Acknowledgments

This work has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No. 285173 – NEED4B "New Energy Efficient Demonstration for Buildings".

