
Scalable Data

Analysis in R

Lee E. Edlefsen

Chief Scientist

UserR! 2011

1

Revolution ConfidentialIntroduction

2

 Our ability to collect and store data has rapidly
been outpacing our ability to analyze it

 We need scalable data analysis software

 R is the ideal platform for such software:
universal data language, easy to add new
functionality, powerful, flexible, forgiving

 I will discuss the approach to scalability we have
taken at Revolution Analytics with our package
RevoScaleR

Revolution ConfidentialRevoScaleR package

 Part of Revolution R Enterprise

 Provides data management and data

analysis functionality

 Scales from small to huge data

 Is internally threaded to use multiple cores

 Distributes computations across multiple

computers (in version 5.0 beta on Windows)

 Revolution R Enterprise is free for academic

use

Revolution R Enterprise 3

Revolution ConfidentialOverview of my talk

 What do I mean by scalability?

 Why bother?

 Revolution‟s approach to scalability:

 R code stays the same as much as possible

 “Chunking” – operate on chunks of data

 Parallel external memory algorithms

 Implementation issues

 Benchmarks

Revolution R Enterprise 4

Revolution ConfidentialScalability

 From small in-memory data.frames to multi-
terabyte data sets distributed across space
and even time

 From single cores on a single computer to
multiple cores on multiple computers/nodes

 From local hardware to remote clouds

 For both data management and data
analysis

Revolution R Enterprise 5

Revolution ConfidentialKeys to scalability

 Most importantly, must be able to process
more data than can fit into memory on one
computer at one time

 Process data in “chunks”

 Up to a point, the bigger the chunk the better

 Allows faster sequential reads from disk

 Minimizes thread overhead in memory

 Takes maximum advantage of R‟s vectorized
code

 Requires “external memory algorithms”

Revolution R Enterprise 6

Revolution ConfidentialHuge data sets are becoming common

 Digital data is not only cheaper to store, it is

cheaper to collect

 More data is collected digitally

 Increasingly more data of all types is being put

directly into data bases

 It is easier now to merge and clean data, and

there is a big and growing market for such

data bases

Revolution R Enterprise 7

Revolution ConfidentialHuge benefits to huge data

 More information, more to be learned

 Variables and relationships can be visualized

and analyzed in much greater detail

 Can allow the data to speak for itself; can

relax or eliminate assumptions

 Can get better predictions and better

understandings of effects

Revolution R Enterprise 8

Revolution ConfidentialTwo huge problems: capacity and speed

 Capacity: problems handling the size of data

sets or models

 Data too big to fit into memory

 Even if it can fit, there are limits on what can be

done

 Even simple data management can be

extremely challenging

 Speed: even without a capacity limit,

computation may be too slow to be useful

9

Revolution Confidential

We are currently incapable of analyzing a

lot of the data we have

 The most commonly-used statistical software

tools either fail completely or are too slow to

be useful on huge data sets

 In many ways we are back where we were in

the „70s and „80‟s in terms of ability to handle

common data sizes

 Fortunately, this is changing

Revolution R Enterprise 10

Revolution ConfidentialRequires software solutions

 For decades the rising tide of technology has
allowed the same data analysis code to run
faster and on bigger data sets

 That happy era has ended

 The size of data sets is increasing much
more rapidly than the speed of single cores,
of I/O, and of RAM

 Need software that can use multiple cores,
multiple hard drives, and multiple computers

Revolution R Enterprise 11

Revolution ConfidentialHigh Performance Analytics: HPA

 HPA is HPC + Data

 High Performance Computing is CPU centric

 Lots of processing on small amounts of data

 Focus is on cores

 High Performance Analytics is data centric

 Less processing per amount of data

 Focus is on feeding data to the cores

 On disk I/O

 On efficient threading, data management in RAM

Revolution R Enterprise 12

Revolution Confidential

Revolution’s approach to HPA and

scalability in the RevoScaleR package

 User interface

 Set of R functions (but mostly implemented in

C++)

 Keep things as familiar as possible

 Capacity and speed

 Handle data in large “chunks” – blocks of rows

and columns

 Use parallel external memory algorithms

Revolution R Enterprise 13

Revolution ConfidentialSome interface design goals

 Should be able to run the same analysis

code on a small data.frame in memory and

on a huge distributed data file on a remote

cluster

 Should be able to do data transformations

using standard R language on standard R

objects

 Should be able to use the R formula

language for analysis

Revolution R Enterprise 14

Revolution ConfidentialSample code for logit on laptop

Standard formula language

Allow transformations in the formula or

in a function or a list of expressions

Row selections also allowed (not shown)

rxLogit(ArrDelay>15 ~ Origin + Year +

Month + DayOfWeek + UniqueCarrier +

F(CRSDepTime), data=airData)

Revolution R Enterprise 15

Revolution ConfidentialSample code for logit on a cluster

Just change the “compute context”

rxOptions(computeContext = myClust)

Otherwise, the code is the same

rxLogit(ArrDelay>15 ~ Origin + Year +

Month + DayOfWeek + UniqueCarrier +

F(CRSDepTime), data=airData)

Revolution R Enterprise 16

Revolution ConfidentialSample data transformation code

Standard R code on standard R objects

Function or a list of expressions

In separate data step or in analysis call

transforms <- list(

DepTime = ConvertToDecimalTime(DepTime),

Late = ArrDelay > 15

)

Revolution R Enterprise 17

Revolution ConfidentialChunking

 Operate blocks of rows for selected columns

 Huge data can be processed a chunk at a

time in a fixed amount of RAM

 Bigger is better up to a point

 Makes it possible to take maximum advantage of

disk bandwidth

 Minimizes threading overhead

 Can take maximum advantage of R‟s vectorized

code

Revolution R Enterprise 18

Revolution Confidential

The basis for a solution for capacity, speed,

distributed and streaming data – PEMA’s

 Parallel external memory algorithms
(PEMA’s) allow solution of both capacity and
speed problems, and can deal with
distributed and streaming data

 External memory algorithms are those that
allow computations to be split into pieces so
that not all data has to be in memory at one
time

 It is possible to “automatically” parallelize
and distribute such algorithms

19

Revolution Confidential

External memory algorithms are widely

available

 Some statistics packages originating in the 70‟s
and 80‟s, such as SAS and Gauss, were based
almost entirely on external memory algorithms

 Examples of external memory algorithms:
 data management (transformations, new variables,

subsets, sorts, merges, converting to factors)
 descriptive statistics, cross tabulations
 linear models, glm, mixed effects
 prediction/scoring
 many maximum likelihood and other optimization

algorithms
 many clustering procedures, tree models

20

Revolution Confidential

Parallel algorithms are widely available

 Parallel algorithms are those that allow

different portions of a computation to be

done “at the same time” using different

cores

 There has been an lot of research on

parallel computing over the past 20-30

years, and many helpful tools are now

available

21

Revolution ConfidentialNot much literature on PEMA’s

 Unfortunately, there is not much literature on

Parallel External Memory Algorithms,

especially for statistical computations

 In what follows, I outline an approach to

PEMA‟s for doing statistical computations

Revolution R Enterprise 22

Revolution ConfidentialParallelizing external memory algorithms

 Parallel algorithms split a job into tasks that
can be run simultaneously

 External memory algorithms split a job into
tasks that operate on separate blocks data

 External memory algorithms usually are run
sequentially, but with proper care most can be
parallelized efficiently and “automatically”

 The key is to split the tasks appropriately and
to minimize inter-thread communication and
synchronization

23

Revolution Confidential

Parallel Computations with

Synchronization and Communication

24

Revolution ConfidentialEmbarrassingly Parallel Computations

25

Revolution ConfidentialSequential External Memory Computations

26

Revolution ConfidentialParallel External Memory Computations

27

Revolution Confidential

Example external memory algorithm for the

mean of a variable

 Initialization task: total=0, count=0

 Process data task: for each block of x; total

= sum(x), count=length(x)

 Update results task: combined total =

sum(all totals), combined count = sum(all

counts)

 Process results task: mean = combined

total / combined count

28

Revolution ConfidentialPEMA’s in RevoScaleR

 Analytics algorithms are implemented in a

framework that automatically and efficiently

parallelizes code

 Key is arranging code in virtual functions:

 Initialize: allows initializations

 ProcessData: process a chunk of data at a time

 UpdateResults: updates one set of results from

another

 ProcessResults: any final processing

Revolution R Enterprise 29

Revolution ConfidentialPEMA’s in RevoScaleR (2)

 Analytic code is completely independent of:

 Data path code that feeds data to ProcessData

 Threading code for using multiple cores

 Inter-computer communication code for

distributing across nodes

 Communication among machines is highly

abstracted (currently can use MPI, RPC)

 Implemented in C++ now, but we plan to add

an implementation in R

Revolution R Enterprise 30

Revolution ConfidentialStoring and reading data

 ScaleR can process data from a variety of

sources

 Has its own optimized format (XDF) that is

especially suitable for chunking

 Allows rapid access to blocks of rows for

selected columns

 The time it takes to read a block of rows is

essentially independent of the total number

of rows and columns in the file

Revolution R Enterprise 31

Revolution ConfidentialThe XDF file format

 Data is stored in blocks of rows per column

 “Header” information is stored at the end of

the file

 Allows sequential reads; tens to hundreds of

thousands of times faster than random reads

 Essentially unlimited in size

 64 bit row indexing per column

 64 bit column indexing (but the practical limit is

much smaller)

Revolution R Enterprise 32

Revolution ConfidentialThe XDF file format (2)

 Allows wide range of storage formats (1 byte

to 8 byte signed and unsigned integers; 4

and 8 byte floats; variable length strings)

 Both new rows and new columns can be

added to a file without having to rewrite the

file

 Changes to header information (variable

names, descriptions, factor levels, and so

on) are extremely fast

Revolution R Enterprise 33

Revolution ConfidentialOverview of data path on a computer

 DataSource object reads a chunk of data
into a DataSet object on I/O thread

 DataSet is given to transformation code
(data copied to R for R transformations);
variables and rows may be created, removed

 Transformed DataSet is virtually split across
computational cores and passed to
ProcessData methods on different threads

 Any disk output is stored until I/O thread can
write it to output DataSource

Revolution R Enterprise 34

Revolution ConfidentialHandling data in memory

 Use of appropriate storage format reduces

space and reduces time to move data in

memory

 Data copying and conversion is minimized

 For instance, when adding a vector of

unsigned shorts to a vector of doubles, the

smaller type is not converted until loaded

into the CPU

Revolution R Enterprise 35

Revolution ConfidentialUse of multiple cores per computer

 Code is internally “threaded” so that inter-

process communication and data transfer is

not required

 One core (typically) handles I/O, while the

other cores process data from the previous

read

 Data is virtually split across computational

cores; each core thinks it has its own private

copy

Revolution R Enterprise 36

Revolution Confidential

Core 0
(Thread 0)

Core n
(Thread n)

Core 2
(Thread 2)

Core 1
(Thread 1)

Multicore Processor (4, 8, 16+ cores)

DataData Data

Disk

RevoScaleR

Shared Memory

• A RevoScaleR algorithm is provided a data source as input

• The algorithm loops over data, reading a block at a time. Blocks of data are read by a separate worker thread

(Thread 0).

• Other worker threads (Threads 1..n) process the data block from the previous iteration of the data loop and update

intermediate results objects in memory

• When all of the data is processed a master results object is created from the intermediate results objects

RevoScaleR – Multi-Threaded Processing

Revolution ConfidentialUse of multiple computers

 Key to efficiency is minimizing data transfer
and communication

 Locality of data!

 For PEMA‟s, the master node controls
computations, telling workers where to get
data and what computations to do

 Intermediate results on each node are
aggregated across cores

 Master node gathers all results, checks for
convergence, and repeats if necessary

Revolution R Enterprise 38

Revolution Confidential

Compute

Node
(RevoScaleR)

Compute

Node
(RevoScaleR)

Master

Node
(RevoScaleR)

Data

Partition

Data

Partition

Compute

Node
(RevoScaleR)

Compute

Node
(RevoScaleR)

Data

Partition

Data

Partition

• Portions of the data source are

made available to each compute

node

• RevoScaleR on the master node

assigns a task to each compute

node

• Each compute node independently

processes its data, and returns it‟s

intermediate results back to the

master node

• master node aggregates all of the

intermediate results from each

compute node and produces the

final result

RevoScaleR – Distributed Computing

Revolution ConfidentialData management capabilities

 Import from external sources

 Transform and clean variables

 Code and recode factors

 Missing values

 Validation

 Sort (huge data, but not distributed)

 Merge

 Aggregate, summarize

Revolution R Enterprise 40

Revolution ConfidentialAnalysis algorithms

 Descriptive statistics (rxSummary)

 Tables and cubes (rxCube, rxCrossTabs)

 Correlations/covariances (rxCovCor, rxCor,
rxCov, rxSSCP)

 Linear regressions (rxLinMod)

 Logistic regressions (rxLogit)

 K means clustering (rxKmeans)

 Predictions (scoring) (rxPredict)

 Other algorithms are being developed

Revolution R Enterprise 41

Revolution ConfidentialBenchmarks using the airline data

 Airline on-time performance data produced by U.S.

Department of Transportation; used in the ASA

Data Expo 09

 22 CSV files for the years 1987 – 2008

 123.5 million observations, 29 variables, about 13

GB

 For benchmarks, sliced and replicated to get files

with 1 million to about 1.25 billion rows

 5 node commodity cluster (4 cores @ 3.2GHz & 16

GB RAM per node); Windows HPC Server 2008

Revolution R Enterprise 42

Revolution ConfidentialDistributed Import of Airline Data

 Copy the 22 CSV files to the 5 nodes,

keeping rough balance in sizes

 Two pass import process:

 Pass1: Import/clean/transform/append

 Pass 2: Recode factors whose levels differ

 Import time: about 3 min 20 secs on 5 node

cluster (about 17 minutes on single node)

Revolution R Enterprise 43

Revolution Confidential

Scalability of RevoScaleR with Rows
Regression, 1 million - 1.1 billion rows, 443 betas

(4 core laptop)

Revolution R Enterprise 44

Revolution Confidential

Scalability of RevoScaleR with Nodes
Regression, 1 billion rows, 443 betas

(1 to 5 nodes, 4 cores per node)

Revolution R Enterprise 45

Revolution Confidential

Scalability of RevoScaleR with Nodes
Logit, 123.5 million rows, 443 betas, 5 iterations

(1 to 5 nodes, 4 cores per node)

Revolution R Enterprise 46

Revolution Confidential

Scalability of RevoScaleR with Nodes
Logit, 1 billion rows, 443 betas, 5 iterations

(1 to 5 nodes, 4 cores per node)

Revolution R Enterprise 47

Revolution ConfidentialComparative benchmarks

 SAS HPA benchmarks:

 Logit, billion rows, 32 nodes, 384 cores, in-memory,
“just a few” parameters: 80 secs.

 Regression, 50 million rows, 24 nodes, in-memory,
1,800 parameters: 42 secs.

 ScaleR: 1 billion rows, 5 nodes, 20 cores ($5K)

 rxLogit, 7 parameters: 43.4 secs

 rxLinMod, 7 parameters: 4.1 secs

 rxLinMod, 1,848 params: 11.9 secs

 rxLogit, 1,848 params: 111.5 secs

 rxLinMod, 13,537 params: 89.8 secs.

Revolution R Enterprise 48

Revolution ConfidentialContact information

Lee Edlefsen

lee@revolutionanalytics.com

Revolution R Enterprise 49

