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Revolution ConfidentialIntroduction
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 Our ability to collect and store data has rapidly 
been outpacing our ability to analyze it

 We need scalable data analysis software 

 R is the ideal platform for such software: 
universal data language, easy to add new 
functionality, powerful, flexible, forgiving

 I will discuss the approach to scalability we have 
taken at Revolution Analytics with our package 
RevoScaleR



Revolution ConfidentialRevoScaleR package

 Part of Revolution R Enterprise 

 Provides data management and data 

analysis functionality

 Scales from small to huge data

 Is internally threaded to use multiple cores

 Distributes computations across multiple 

computers (in version 5.0 beta on Windows)

 Revolution R Enterprise is free for academic 

use

Revolution R Enterprise 3



Revolution ConfidentialOverview of my talk

 What do I mean by scalability?

 Why bother?

 Revolution‟s approach to scalability: 

 R code stays the same as much as possible

 “Chunking” – operate on chunks of data

 Parallel external memory algorithms

 Implementation issues

 Benchmarks

Revolution R Enterprise 4



Revolution ConfidentialScalability

 From small in-memory data.frames to multi-
terabyte data sets distributed across space 
and even time

 From single cores on a single computer to 
multiple cores on multiple computers/nodes

 From local hardware to remote clouds

 For both data management and data 
analysis
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Revolution ConfidentialKeys to scalability

 Most importantly, must be able to process 
more data than can fit into memory on one 
computer at one time

 Process data in “chunks”

 Up to a point, the bigger the chunk the better

 Allows faster sequential reads from disk

 Minimizes thread overhead in memory

 Takes maximum advantage of R‟s vectorized
code

 Requires “external memory algorithms”

Revolution R Enterprise 6



Revolution ConfidentialHuge data sets are becoming common

 Digital data is not only cheaper to store, it is 

cheaper to collect

 More data is collected digitally

 Increasingly more data of all types is being put 

directly into data bases

 It is easier now to merge and clean data, and 

there is a big and growing market for such 

data bases
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Revolution ConfidentialHuge benefits to huge data

 More information, more to be learned

 Variables and relationships can be visualized 

and analyzed in much greater detail

 Can allow the data to speak for itself; can 

relax or eliminate assumptions

 Can get better predictions and better 

understandings of effects
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Revolution ConfidentialTwo huge problems: capacity and speed

 Capacity: problems handling the size of data 

sets or models

 Data too big to fit into memory

 Even if it can fit, there are limits on what can be 

done 

 Even simple data management can be 

extremely challenging

 Speed: even without a capacity limit, 

computation may be too slow to be useful
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Revolution Confidential

We are currently incapable of analyzing a 

lot of the data we have

 The most commonly-used statistical software 

tools either fail completely or are too slow to 

be useful on huge data sets

 In many ways we are back where we were in 

the „70s and „80‟s in terms of ability to handle 

common data sizes

 Fortunately, this is changing

Revolution R Enterprise 10



Revolution ConfidentialRequires software solutions

 For decades the rising tide of technology has 
allowed the same data analysis code to run 
faster and on bigger data sets

 That happy era has ended

 The size of data sets is increasing much 
more rapidly than the speed of single cores, 
of I/O, and of RAM

 Need software that can use multiple cores, 
multiple hard drives, and multiple computers

Revolution R Enterprise 11



Revolution ConfidentialHigh Performance Analytics: HPA

 HPA is HPC + Data

 High Performance Computing is CPU centric

 Lots of processing on small amounts of data

 Focus is on cores

 High Performance Analytics is data centric

 Less processing per amount of data

 Focus is on feeding data to the cores

 On disk I/O

 On efficient threading, data management in RAM
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Revolution Confidential

Revolution’s approach to HPA and 

scalability in the RevoScaleR package

 User interface 

 Set of R functions (but mostly implemented in 

C++)

 Keep things as familiar as possible

 Capacity and speed

 Handle data in large “chunks” – blocks of rows 

and columns

 Use parallel external memory algorithms

Revolution R Enterprise 13



Revolution ConfidentialSome interface design goals

 Should be able to run the same analysis 

code on a small data.frame in memory and 

on a huge distributed data file on a remote 

cluster

 Should be able to do data transformations 

using standard R language on standard R 

objects

 Should be able to use the R formula 

language for analysis

Revolution R Enterprise 14



Revolution ConfidentialSample code for logit on laptop

# # Standard formula language

# # Allow transformations in the formula or

# in a function or a list of expressions

# # Row selections also allowed (not shown)

rxLogit(ArrDelay>15 ~ Origin + Year + 

Month + DayOfWeek + UniqueCarrier + 

F(CRSDepTime), data=airData)

Revolution R Enterprise 15



Revolution ConfidentialSample code for logit on a cluster

# Just change the “compute context”

rxOptions(computeContext = myClust)

# Otherwise, the code is the same

rxLogit(ArrDelay>15 ~ Origin + Year + 

Month + DayOfWeek + UniqueCarrier + 

F(CRSDepTime), data=airData)
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Revolution ConfidentialSample data transformation code

# # Standard R code on standard R objects

# # Function or a list of expressions

# # In separate data step or in analysis call  

transforms <- list(

DepTime = ConvertToDecimalTime(DepTime),

Late = ArrDelay > 15

)

Revolution R Enterprise 17



Revolution ConfidentialChunking

 Operate blocks of rows for selected columns

 Huge data can be processed a chunk at a 

time in a fixed amount of RAM

 Bigger is better up to a point

 Makes it possible to take maximum advantage of 

disk bandwidth

 Minimizes threading overhead

 Can take maximum advantage of R‟s vectorized 

code

Revolution R Enterprise 18



Revolution Confidential

The basis for a solution for capacity, speed, 

distributed  and streaming data – PEMA’s

 Parallel external memory algorithms 
(PEMA’s) allow solution of both capacity and 
speed problems, and can deal with 
distributed and streaming data

 External memory algorithms are those that 
allow computations to be split into pieces so 
that not all data has to be in memory at one 
time

 It is possible to “automatically” parallelize 
and distribute such algorithms 
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Revolution Confidential

External memory algorithms are widely 

available

 Some statistics packages originating in the 70‟s 
and 80‟s, such as SAS and Gauss, were based 
almost entirely on external memory algorithms

 Examples of external memory algorithms:
 data management (transformations, new variables, 

subsets, sorts, merges, converting to factors) 
 descriptive statistics, cross tabulations
 linear models, glm, mixed effects
 prediction/scoring
 many maximum likelihood and other optimization 

algorithms
 many clustering procedures, tree models
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Revolution Confidential

Parallel algorithms are widely available 

 Parallel algorithms are those that allow 

different portions of a computation to be 

done “at the same time” using different 

cores

 There has been an lot of research on 

parallel computing over the past 20-30 

years, and many helpful tools are now 

available
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Revolution ConfidentialNot much literature on PEMA’s

 Unfortunately, there is not much literature on 

Parallel External Memory Algorithms, 

especially for statistical computations

 In what follows, I outline an approach to 

PEMA‟s for doing statistical computations

Revolution R Enterprise 22



Revolution ConfidentialParallelizing external memory algorithms

 Parallel algorithms split a job into tasks that 
can be run simultaneously

 External memory algorithms split a job into 
tasks that operate on separate blocks data

 External memory algorithms usually are run 
sequentially, but with proper care most can be 
parallelized efficiently and “automatically”

 The key is to split the tasks appropriately and 
to minimize inter-thread communication and 
synchronization
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Revolution Confidential

Parallel Computations with 

Synchronization and Communication
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Revolution ConfidentialEmbarrassingly Parallel Computations
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Revolution ConfidentialSequential External Memory Computations
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Revolution ConfidentialParallel External Memory Computations
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Revolution Confidential

Example external memory algorithm for the 

mean of a variable

 Initialization task: total=0, count=0

 Process data task: for each block of x; total 

= sum(x), count=length(x)

 Update results task: combined total = 

sum(all totals), combined count = sum(all 

counts)

 Process results task: mean = combined 

total / combined count
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Revolution ConfidentialPEMA’s in RevoScaleR

 Analytics algorithms are implemented in a 

framework that automatically and efficiently 

parallelizes code

 Key is arranging code in virtual functions:

 Initialize: allows initializations

 ProcessData: process a chunk of data at a time

 UpdateResults: updates one set of results from 

another

 ProcessResults: any final processing

Revolution R Enterprise 29



Revolution ConfidentialPEMA’s in RevoScaleR (2)

 Analytic code is completely independent of:

 Data path code that feeds data to ProcessData

 Threading code for using multiple cores

 Inter-computer communication code for 

distributing across nodes

 Communication among machines is highly 

abstracted (currently can use MPI, RPC)

 Implemented in C++ now, but we plan to add 

an implementation in R

Revolution R Enterprise 30



Revolution ConfidentialStoring and reading data

 ScaleR can process data from a variety of 

sources

 Has its own optimized format (XDF) that is 

especially suitable for chunking

 Allows rapid access to blocks of rows for 

selected columns

 The time it takes to read a block of rows is 

essentially independent of the total number 

of rows and columns in the file

Revolution R Enterprise 31



Revolution ConfidentialThe XDF file format

 Data is stored in blocks of rows per column

 “Header” information is stored at the end of 

the file

 Allows sequential reads; tens to hundreds of 

thousands of times faster than random reads

 Essentially unlimited in size

 64 bit row indexing per column

 64 bit column indexing (but the practical limit is 

much smaller)

Revolution R Enterprise 32



Revolution ConfidentialThe XDF file format (2)

 Allows wide range of storage formats (1 byte 

to 8 byte signed and unsigned integers; 4 

and 8 byte floats; variable length strings)

 Both new rows and new columns can be 

added to a file without having to rewrite the 

file

 Changes to header information (variable 

names, descriptions, factor levels, and so 

on) are extremely fast

Revolution R Enterprise 33



Revolution ConfidentialOverview of data path on a computer

 DataSource object reads a chunk of data 
into a DataSet object on I/O thread

 DataSet is given to transformation code 
(data copied to R for R transformations);  
variables and rows may be created, removed

 Transformed DataSet is virtually split across 
computational cores and passed to 
ProcessData methods on different threads

 Any disk output is stored until I/O thread can 
write it to output DataSource

Revolution R Enterprise 34



Revolution ConfidentialHandling data in memory

 Use of appropriate storage format reduces 

space and reduces time to move data in 

memory

 Data copying and conversion is minimized

 For instance, when adding a vector of 

unsigned shorts to a vector of doubles, the 

smaller type is not converted until loaded 

into the CPU

Revolution R Enterprise 35



Revolution ConfidentialUse of multiple cores per computer

 Code is internally “threaded” so that inter-

process communication and data transfer is 

not required

 One core (typically) handles I/O, while the 

other cores process data from the previous 

read

 Data is virtually split across computational 

cores; each core thinks it has its own private 

copy

Revolution R Enterprise 36



Revolution Confidential

Core 0
(Thread 0)

Core n
(Thread n)

Core 2
(Thread 2)

Core 1
(Thread 1)

Multicore Processor (4, 8, 16+ cores)

DataData Data

Disk

RevoScaleR

Shared Memory

• A RevoScaleR algorithm is provided a data source as input

• The algorithm loops over data, reading a block at a time.  Blocks of data are read by a separate worker thread 

(Thread 0).

• Other worker threads (Threads 1..n) process the data block from the previous iteration of the data loop and update 

intermediate results objects in memory

• When all of the data is processed a master results object is created from the intermediate results objects

RevoScaleR – Multi-Threaded Processing 



Revolution ConfidentialUse of multiple computers

 Key to efficiency is minimizing data transfer 
and communication

 Locality of data!

 For PEMA‟s, the master node controls 
computations, telling workers where to get 
data and what computations to do

 Intermediate results on each node are 
aggregated across cores

 Master node gathers all results, checks for 
convergence, and repeats if necessary

Revolution R Enterprise 38



Revolution Confidential

Compute 

Node
(RevoScaleR)

Compute 

Node
(RevoScaleR)

Master 

Node
(RevoScaleR)

Data

Partition

Data

Partition

Compute 

Node
(RevoScaleR)

Compute 

Node
(RevoScaleR)

Data

Partition

Data

Partition

• Portions of the data source are 

made available to each compute 

node 

• RevoScaleR on the master node 

assigns a task to each compute 

node

• Each compute node independently 

processes its data, and returns it‟s 

intermediate results back to the 

master node

• master node aggregates all of the 

intermediate results from each 

compute node and produces the 

final result

RevoScaleR – Distributed Computing



Revolution ConfidentialData management capabilities

 Import from external sources

 Transform and clean variables

 Code and recode factors

 Missing values

 Validation

 Sort (huge data, but not distributed)

 Merge

 Aggregate, summarize

Revolution R Enterprise 40



Revolution ConfidentialAnalysis algorithms 

 Descriptive statistics (rxSummary)

 Tables and cubes (rxCube, rxCrossTabs)

 Correlations/covariances (rxCovCor, rxCor, 
rxCov, rxSSCP)

 Linear regressions (rxLinMod)

 Logistic regressions (rxLogit)

 K means clustering (rxKmeans)

 Predictions (scoring) (rxPredict)

 Other algorithms are being developed

Revolution R Enterprise 41



Revolution ConfidentialBenchmarks using the airline data

 Airline on-time performance data produced by U.S. 

Department of Transportation; used in the ASA 

Data Expo 09 

 22 CSV files for the years 1987 – 2008

 123.5 million observations, 29 variables, about 13 

GB

 For benchmarks, sliced and replicated to get files 

with 1 million to about 1.25 billion rows

 5 node commodity cluster (4 cores @ 3.2GHz & 16 

GB RAM per node); Windows HPC Server 2008

Revolution R Enterprise 42



Revolution ConfidentialDistributed Import of Airline Data

 Copy the 22 CSV files to the 5 nodes, 

keeping rough balance in sizes

 Two pass import process:

 Pass1: Import/clean/transform/append

 Pass 2: Recode factors whose levels differ

 Import time: about 3 min 20 secs on 5 node 

cluster (about 17 minutes on single node)

Revolution R Enterprise 43
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Scalability of RevoScaleR with Rows
Regression, 1 million - 1.1 billion rows, 443 betas

(4 core laptop) 

Revolution R Enterprise 44
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Scalability of RevoScaleR with Nodes
Regression, 1 billion rows, 443 betas

(1 to 5 nodes, 4 cores per node)

Revolution R Enterprise 45
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Scalability of RevoScaleR with Nodes
Logit, 123.5 million rows, 443 betas, 5 iterations 

(1 to 5 nodes, 4 cores per node)

Revolution R Enterprise 46
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Scalability of RevoScaleR with Nodes
Logit, 1 billion rows, 443 betas, 5 iterations 

(1 to 5 nodes, 4 cores per node)

Revolution R Enterprise 47



Revolution ConfidentialComparative benchmarks

 SAS HPA benchmarks:

 Logit, billion rows, 32 nodes, 384 cores, in-memory, 
“just a few” parameters: 80 secs.

 Regression, 50 million rows, 24 nodes, in-memory, 
1,800 parameters: 42 secs.

 ScaleR: 1 billion rows, 5 nodes, 20 cores ($5K)

 rxLogit, 7 parameters: 43.4 secs

 rxLinMod, 7 parameters: 4.1 secs

 rxLinMod, 1,848 params: 11.9 secs

 rxLogit, 1,848 params: 111.5 secs

 rxLinMod, 13,537 params: 89.8 secs.
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Revolution ConfidentialContact information

Lee Edlefsen

lee@revolutionanalytics.com
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