Tests for Multivariate Linear Models with the **car** Package

John Fox

McMaster University Hamilton, Ontario, Canada

useR! 2011

John Fox (McMaster)

Multivariate Linear Models

useR! 2011 1 / 37

Overview

• It is straightforward to fit multivariate linear models (MLMs) in R with the lm function.

- It is straightforward to fit multivariate linear models (MLMs) in R with the lm function.
- The anova function is flexible (Dalgaard, 2007) but it calculates sequential ("type I") tests, and performing other common tests, especially for repeated-measures designs, is relatively inconvenient.

- It is straightforward to fit multivariate linear models (MLMs) in R with the lm function.
- The anova function is flexible (Dalgaard, 2007) but it calculates sequential ("type I") tests, and performing other common tests, especially for repeated-measures designs, is relatively inconvenient.
- The Anova function in the **car** package (Fox and Weisberg, 2011) can perform partial ("type II" or "type III") tests for the terms in a multivariate linear model, including simply specified multivariate and univariate tests for repeated-measures models.

- It is straightforward to fit multivariate linear models (MLMs) in R with the lm function.
- The anova function is flexible (Dalgaard, 2007) but it calculates sequential ("type I") tests, and performing other common tests, especially for repeated-measures designs, is relatively inconvenient.
- The Anova function in the **car** package (Fox and Weisberg, 2011) can perform partial ("type II" or "type III") tests for the terms in a multivariate linear model, including simply specified multivariate and univariate tests for repeated-measures models.
- The linearHypothesis function in the **car** package can test arbitrary linear hypothesis for multivariate linear models, including models for repeated measures.

- It is straightforward to fit multivariate linear models (MLMs) in R with the lm function.
- The anova function is flexible (Dalgaard, 2007) but it calculates sequential ("type I") tests, and performing other common tests, especially for repeated-measures designs, is relatively inconvenient.
- The Anova function in the **car** package (Fox and Weisberg, 2011) can perform partial ("type II" or "type III") tests for the terms in a multivariate linear model, including simply specified multivariate and univariate tests for repeated-measures models.
- The linearHypothesis function in the **car** package can test arbitrary linear hypothesis for multivariate linear models, including models for repeated measures.
- Both the Anova and linearHypothesis functions return a variety of information useful in further computation on multivariate linear models.

- Anderson's data on three species of irises in Quebec's Gaspé Peninsula (Anderson, 1935) are a staple of the literature on multivariate statistics, and were used by R. A. Fisher (1936) to introduce discriminant analysis:
- > library(car)
- > some(iris)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
25	4.8	3.4	1.9	0.2	setosa
47	5.1	3.8	1.6	0.2	setosa
67	5.6	3.0	4.5	1.5	versicolor
73	6.3	2.5	4.9	1.5	versicolor
104	6.3	2.9	5.6	1.8	virginica
109	6.7	2.5	5.8	1.8	virginica
113	6.8	3.0	5.5	2.1	virginica
131	7.4	2.8	6.1	1.9	virginica
140	6.9	3.1	5.4	2.1	virginica
149	6.2	3.4	5.4	2.3	virginica

• Three species of irises in the Anderson/Fisher data set: setosa (left), versicolor (center), and Virginica (right)

Source: The Wikimedia Commons.

- > scatterplotMatrix(~ Sepal.Length + Sepal.Width + Petal.Length
- + + Petal.Width | Species,
- + data=iris, smooth=FALSE, reg.line=FALSE, ellipse=TRUE,
- + by.groups=TRUE, diagonal="none")

John Fox (McMaster)

- > par(mfrow=c(2, 2))
- + Boxplot(iris[, response] ~ Species, data=iris, ylab=response)

John Fox (McMaster)

Multivariate Linear Models

• Fitting a one-way MANOVA model to the iris data:

```
> mod.iris <- lm(cbind(Sepal.Length, Sepal.Width, Petal.Length,</pre>
  Petal.Width) ~ Species, data=iris)
+
> class(mod.iris)
[1] "m]m" "]m"
> mod.iris
Call:
lm(formula = cbind(Sepal.Length, Sepal.Width, Petal.Length,
    Petal.Width) ~ Species, data = iris)
```

Coefficients:

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
(Intercept)	5.006	3.428	1.462	0.246
Speciesversicolor	0.930	-0.658	2.798	1.080
Speciesvirginica	1.582	-0.454	4.090	1.780

• For this simple model, with just one term, Anova in **car** and anova produce the same MANOVA test:

```
> (manova.iris <- Anova(mod.iris))</pre>
```

```
Type II MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)

Species 2 1.19 53.5 8 290 <2e-16

> anova(mod.iris)

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.993 5204 4 144 <2e-16

Species 2 1.192 53 8 290 <2e-16
```

Residuals 147

• The summary method for Anova.mlm objects provides more detail:

```
> summary(manova.iris)
```

```
Type II MANOVA Tests:
```

Sum of square	es and product	ts for error	:	
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Sepal.Length	38.956	13.630	24.625	5.645
Sepal.Width	13.630	16.962	8.121	4.808
Petal.Length	24.625	8.121	27.223	6.272
Petal.Width	5.645	4.808	6.272	6.157

(output continued ...)

(... output concluded)

Term: Species

Sum of squares an	nd j	products fo	or the hy	pothesi	5:	
Sepa	al.1	Length Sepa	al.Width	Petal.Le	ength P	etal.Width
Sepal.Length		63.21	-19.95	10	65.25	71.28
Sepal.Width		-19.95	11.34	-!	57.24	-22.93
Petal.Length		165.25	-57.24	43	37.10	186.77
Petal.Width		71.28	-22.93	18	36.77	80.41
Multivariate Test	ts:	Species				
	${\tt Df}$	test stat	approx F	num Df	den Df	Pr(>F)
Pillai	2	1.19	53.5	8	290	<2e-16
Wilks	2	0.02	199.1	8	288	<2e-16
Hotelling-Lawley	2	32.48	580.5	8	286	<2e-16
Roy	2	32.19	1167.0	4	145	<2e-16

- The photographs, scatterplot matrix, and boxplots suggest that versicolor and virginica are more similar to each other than either is to setosa.
- The linearHypothesis function in **car** can be used to test more specific linear hypotheses about the parameters of a MLM.
- For example, to test for differences between setosa (the baseline level of Species and the average of versicolor and virginica:
- > linearHypothesis(mod.iris,

```
+ "0.5*Speciesversicolor + 0.5*Speciesvirginica = 0")
```

Sum of square	es and product	ts for the h	ypothesis:	
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Sepal.Length	52.58453	-23.27787	144.1888	59.86933
Sepal.Width	-23.27787	10.30453	-63.8288	-26.50267
Petal.Length	144.18880	-63.82880	395.3712	164.16400
Petal.Width	59.86933	-26.50267	164.1640	68.16333
Sum of square	es and product	ts for error	:	
	${\tt Sepal.Length}$	Sepal.Width	Petal.Length	Petal.Width
Sepal.Length	38.9562	13.6300	24.6246	5.6450

Sepal.Width	13.6300	16.9620	8.1208	4.8084
Petal.Length	24.6246	8.1208	27.2226	6.2718
Petal.Width	5.6450	4.8084	6.2718	6.1566

Multivariate Tests:

	Df	test stat	approx F	num Df	den Df	Pr(>F)
Pillai	1	0.967269	1063.871	4	144	< 2.22e-16 ***
Wilks	1	0.032731	1063.871	4	144	< 2.22e-16 ***
Hotelling-Lawley	1	29.551969	1063.871	4	144	< 2.22e-16 ***
Roy	1	29.551969	1063.871	4	144	< 2.22e-16 ***

• An equivalent more direct approach is to fit the model with custom contrasts, and then to test each contrast:

		0
setosa	1.0	0
versicolor	-0.5	1
virginica	-0.5	-1

```
> mod.iris.2 <- update(mod.iris)
> rownames(coef(mod.iris.2))
```

```
[1] "(Intercept)""Speciesset v. vers & virg"[3] "Speciesvers v. virg"
```

> linearHypothesis(mod.iris.2, c(0, 1, 0)) # set v. vers & virg

```
Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.967269 1063.871 4 144 < 2.22e-16 ***

Wilks 1 0.032731 1063.871 4 144 < 2.22e-16 ***

Hotelling-Lawley 1 29.551969 1063.871 4 144 < 2.22e-16 ***

Roy 1 29.551969 1063.871 4 144 < 2.22e-16 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
```

. . .

- 4 緑 ト - 4 三 ト - 4 三 ト

• *Repeated-measures data* arise when multivariate responses represent the same individuals measured on a response variable (or variables) on different occasions or under different circumstances.

- *Repeated-measures data* arise when multivariate responses represent the same individuals measured on a response variable (or variables) on different occasions or under different circumstances.
- There may be a more or less complex design on the repeated measures.

- *Repeated-measures data* arise when multivariate responses represent the same individuals measured on a response variable (or variables) on different occasions or under different circumstances.
- There may be a more or less complex design on the repeated measures.
- The simplest case is that of a single repeated-measures or *within-subjects* factor.

• Repeated-measures designs can be handled with the anova function, but it is simpler to get common tests from the Anova and linearHypothesis functions in the **car** package.

- Repeated-measures designs can be handled with the anova function, but it is simpler to get common tests from the Anova and linearHypothesis functions in the **car** package.
 - The general procedure is first to fit a multivariate linear models with all of the repeated measures as responses.

- Repeated-measures designs can be handled with the anova function, but it is simpler to get common tests from the Anova and linearHypothesis functions in the **car** package.
 - The general procedure is first to fit a multivariate linear models with all of the repeated measures as responses.
 - Then an artificial data frame is created in which each of the repeated measures is a row and in which the columns represent the repeated-measures factor or factors.

- Repeated-measures designs can be handled with the anova function, but it is simpler to get common tests from the Anova and linearHypothesis functions in the **car** package.
 - The general procedure is first to fit a multivariate linear models with all of the repeated measures as responses.
 - Then an artificial data frame is created in which each of the repeated measures is a row and in which the columns represent the repeated-measures factor or factors.
 - Finally, the Anova or linearHypothesis function is called, using the idata and idesign arguments (and optionally the icontrasts argument)—or alternatively the imatrix argument to Anova or P argument to linearHypothesis—to specify the intra-subject design.

- To illustrate, I employ contrived data reported by O'Brien and Kaiser (1985) in "an extensive primer" for the MANOVA approach to repeated-measures designs.
- The data set OBrienKaiser is provided by the car package:
- > some(OBrienKaiser, 6)

	treatme	nt geno	ler j	pre.1	pre.2	2 pre	ə.3	pre	.4	pre.5	post.1	post.2	post.3
2	contr	ol	М	4	4	Ł	5		3	4	2	2	3
4	contr	ol	F	5	4	Ł	7		5	4	2	2	3
6		Α	М	7	8	3	7		9	9	9	9	10
7		Α	М	5	5	5	6		4	5	7	7	8
11		В	М	3	3	3	4		2	3	5	4	7
12		В	М	6	7	•	8		6	3	9	10	11
	post.4	post.5	fup	.1 fur	p.2 ft	ıp.3	fup	.4	fup	.5			
2	5	3		4	5	6		4		1			
4	5	3		4	4	5		3		4			
6	8	9		9	10	11		9		6			
7	10	8		8	9	11		9		8			
11	5	4		5	6	8		6		5			
12	9	6		8	7	10		8		7			

- There are two between-subjects factors in the O'Brien-Kaiser data:
 - gender, with levels F and M.

- gender, with levels F and M.
- treatment, with levels A, B, and control. I will imagine that the treatments A and B represent different innovative methods of teaching reading to learning-disabled students, and that the control treatment represents a standard method.

- gender, with levels F and M.
- treatment, with levels A, B, and control. I will imagine that the treatments A and B represent different innovative methods of teaching reading to learning-disabled students, and that the control treatment represents a standard method.
- The 15 response variables in the data set represent two crossed within-subjects factors:

- gender, with levels F and M.
- treatment, with levels A, B, and control. I will imagine that the treatments A and B represent different innovative methods of teaching reading to learning-disabled students, and that the control treatment represents a standard method.
- The 15 response variables in the data set represent two crossed within-subjects factors:
 - *phase*, with three levels for the *pretest*, *post-test*, and *follow-up* phases of the study.

- gender, with levels F and M.
- treatment, with levels A, B, and control. I will imagine that the treatments A and B represent different innovative methods of teaching reading to learning-disabled students, and that the control treatment represents a standard method.
- The 15 response variables in the data set represent two crossed within-subjects factors:
 - *phase*, with three levels for the *pretest*, *post-test*, and *follow-up* phases of the study.
 - *hour*, representing five successive hours, at which measurements of reading-comprehension are taken within each phase.

• The data are "unbalanced," with unequal numbers of subjects in the cells of the between-subject design:

> xtabs(~ treatment + gender, data=OBrienKaiser)

```
reatment F M
control 2 3
A 2 2
B 4 3
```

• Mean reading scores for combinations of gender, treatment, phase, and hour:

John Fox (McMaster)

Multivariate Linear Models

useR! 2011 20 / 37

-

• It appears as if reading improves across phases in the two experimental treatments but not in the control group, suggesting a possible treatment-by-phase interaction.

- It appears as if reading improves across phases in the two experimental treatments but not in the control group, suggesting a possible treatment-by-phase interaction.
- There is a possibly quadratic relationship of reading to hour within each phase, with an initial rise and then decline, perhaps representing fatigue, suggesting an hour main effect.

- It appears as if reading improves across phases in the two experimental treatments but not in the control group, suggesting a possible treatment-by-phase interaction.
- There is a possibly quadratic relationship of reading to hour within each phase, with an initial rise and then decline, perhaps representing fatigue, suggesting an hour main effect.
- Males and females respond similarly to the control and B treatment groups, but that males do better than females in the A treatment group, suggesting a possible gender-by-treatment interaction.

- Both of the between-subjects factors have predefined contrasts, with -1, 1 "deviation" coding for gender (produced by contr.sum) and custom contrasts for treatment.
- For treatment, the first contrast is for the control group vs. the average of the experimental groups, and the second contrast is for treatment A vs. treatment B.
- > contrasts(OBrienKaiser\$treatment)

	[,1]	[,2]
control	-2	0
Α	1	-1
В	1	1

> contrasts(OBrienKaiser\$gender)

```
[,1]
F 1
```

M -1

• I define the "data" for the within-subjects design as follows:

```
> phase <- factor(rep(c("pretest", "posttest", "followup"), each=5),
+ levels=c("pretest", "posttest", "followup"))
```

- > hour <- ordered(rep(1:5, 3))</pre>
- > idata <- data.frame(phase, hour)</pre>
- > idata

phase hour

1	pretest	1
2	pretest	2
•		
5	pretest	5
6	posttest	1
7	posttest	2
•		
10	posttest	5
11	followup	1
12	followup	2
•		
15	followup	5

 Fitting the MLM and calling Anova for the repeated-measures MANOVA:

>	<pre>mod.ok <- lm(cbind(pre.1, pre.2, pre.3, pre.4, pre.5,</pre>
+	<pre>post.1, post.2, post.3, post.4, post.5,</pre>
+	<pre>fup.1, fup.2, fup.3, fup.4, fup.5) ~ treatment*gender,</pre>
+	data=OBrienKaiser)

(av.ok <- Anova(mod.ok, idata=idata, idesign=~phase*hour, type=3))</pre>

Type III Repeated Measures	MANO	VA Tests:	Pillai	test statistic		
	Df 1	test stat	approx	F num Di	f den Df	Pr(>F)
(Intercept)	1	0.967	296.	4 :	l 10	9.2e-09
treatment	2	0.441	3.	9 2	2 10	0.05471
gender	1	0.268	3.	7 :	l 10	0.08480
treatment:gender	2	0.364	2.	9 2	2 10	0.10447
phase	1	0.814	19.	6 2	2 9	0.00052
<pre>treatment:phase</pre>	2	0.696	2.	7 4	1 20	0.06211
gender:phase	1	0.066	0.	3 2	2 9	0.73497
<pre>treatment:gender:phase</pre>	2	0.311	0.	9 4	1 20	0.47215
hour	1	0.933	24.	3 4	1 7	0.00033
<pre>treatment:hour</pre>	2	0.316	0.	4 8	3 16	0.91833
gender:hour	1	0.339	0.	9 4	1 7	0.51298
<pre>treatment:gender:hour</pre>	2	0.570	0.	8 8	3 16	0.61319
phase:hour	1	0.560	0.	58	3 3	0.82027
<pre>treatment:phase:hour</pre>	2	0.662	0.	2 16	5 8	0.99155
gender:phase:hour	1	0.712	0.	9 8	3 3	0.58949
<pre>treatment:gender:phase:hour</pre>	2	0.793	0.	3 16	3 8	0.97237

• Following O'Brien and Kaiser, I report type-III tests, which are computed correctly because the contrasts employed for treatment and gender, and hence their interaction, are orthogonal in the row-basis of the between-subjects design.

- Following O'Brien and Kaiser, I report type-III tests, which are computed correctly because the contrasts employed for treatment and gender, and hence their interaction, are orthogonal in the row-basis of the between-subjects design.
- When the idata and idesign arguments are specified, Anova automatically constructs orthogonal contrasts for different terms in the within-subjects design, using contr.sum for a factor such as phase and contr.poly for an ordered factor such as hour.

- Following O'Brien and Kaiser, I report type-III tests, which are computed correctly because the contrasts employed for treatment and gender, and hence their interaction, are orthogonal in the row-basis of the between-subjects design.
- When the idata and idesign arguments are specified, Anova automatically constructs orthogonal contrasts for different terms in the within-subjects design, using contr.sum for a factor such as phase and contr.poly for an ordered factor such as hour.
- Alternatively, the user can assign contrasts to the columns of the intra-subject data, either directly or via the icontrasts argument to Anova. Anova checks that the within-subjects contrast coding for different terms is orthogonal.

• The results show that the anticipated hour effect is statistically significant.

- The results show that the anticipated hour effect is statistically significant.
- The treatment × phase and treatment × gender interactions are not quite significant.

- The results show that the anticipated hour effect is statistically significant.
- The treatment × phase and treatment × gender interactions are not quite significant.
- There is, however, a statistically significant phase main effect.

- The results show that the anticipated hour effect is statistically significant.
- The treatment × phase and treatment × gender interactions are not quite significant.
- There is, however, a statistically significant phase main effect.
- We should not over-interpret these results, partly because the data set is small and partly because it is contrived.

• The summary method for Anova.mlm objects can report a variety of information, including a traditional "univariate" repeated-measures ANOVA with tests of sphericity and corrections for non-sphericity.

- The summary method for Anova.mlm objects can report a variety of information, including a traditional "univariate" repeated-measures ANOVA with tests of sphericity and corrections for non-sphericity.
- Suppressing the multivariate tests:

> summary(av.ok, multivariate=FALSE)

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

	SS	$\verb"num Df"$	Error SS	${\tt den}\ {\tt Df}$	F	Pr(>F)
(Intercept)	6759	1	228.1	10	296.39	9.2e-09
treatment	180	2	228.1	10	3.94	0.0547
gender	83	1	228.1	10	3.66	0.0848
treatment:gender	130	2	228.1	10	2.86	0.1045
phase	130	2	80.3	20	16.13	6.7e-05
treatment:phase	78	4	80.3	20	4.85	0.0067
gender:phase	2	2	80.3	20	0.28	0.7566
<pre>treatment:gender:phase</pre>	10	4	80.3	20	0.64	0.6424
hour	104	4	62.5	40	16.69	4.0e-08
treatment:hour	1	8	62.5	40	0.09	0.9992
gender:hour	3	4	62.5	40	0.45	0.7716
<pre>treatment:gender:hour</pre>	8	8	62.5	40	0.62	0.7555
phase:hour	11	8	96.2	80	1.18	0.3216
treatment:phase:hour	7	16	96.2	80	0.35	0.9901
gender:phase:hour	9	8	96.2	80	0.93	0.4956
<pre>treatment:gender:phase:hour</pre>	14	16	96.2	80	0.74	0.7496

John Fox (McMaster)

▶ ৰ ≣ ▶ ≣ ৩৭৫ useR! 2011 29 / 37

(... output continued)

Mauchly Tests for Sphericity

	Test	statistic	p-value
phase		0.749	0.273
<pre>treatment:phase</pre>		0.749	0.273
gender:phase		0.749	0.273
<pre>treatment:gender:phase</pre>		0.749	0.273
hour		0.066	0.008
treatment:hour		0.066	0.008
gender:hour		0.066	0.008
<pre>treatment:gender:hour</pre>		0.066	0.008
phase:hour		0.005	0.449
<pre>treatment:phase:hour</pre>		0.005	0.449
gender:phase:hour		0.005	0.449
<pre>treatment:gender:phase:hour</pre>		0.005	0.449

(... output continued)

Greenhouse-Geisser and Huynh-Feldt Corrections for Departure from Sphericity

	GG eps	<pre>Pr(>F[GG])</pre>
phase	0.80	0.00028
treatment:phase	0.80	0.01269
gender:phase	0.80	0.70896
<pre>treatment:gender:phase</pre>	0.80	0.61162
hour	0.46	0.000098
treatment:hour	0.46	0.97862
gender:hour	0.46	0.62843
<pre>treatment:gender:hour</pre>	0.46	0.64136
phase:hour	0.45	0.33452
<pre>treatment:phase:hour</pre>	0.45	0.93037
gender:phase:hour	0.45	0.44908
<pre>treatment:gender:phase:hour</pre>	0.45	0.64634

(... output concluded)

	HF eps	<pre>Pr(>F[HF])</pre>
phase	0.928	0.00011
<pre>treatment:phase</pre>	0.928	0.00844
gender:phase	0.928	0.74086
<pre>treatment:gender:phase</pre>	0.928	0.63200
hour	0.559	0.000023
treatment:hour	0.559	0.98866
gender:hour	0.559	0.66455
<pre>treatment:gender:hour</pre>	0.559	0.66930
phase:hour	0.733	0.32966
<pre>treatment:phase:hour</pre>	0.733	0.97523
gender:phase:hour	0.733	0.47803
<pre>treatment:gender:phase:hour</pre>	0.733	0.70801

イロト イロト イヨト イ

- As for simpler multivariate linear models, the linearHypothesis function can be used to test more focused hypotheses about the parameters of repeated-measures models, including for within-subjects terms.
- For example, to duplicate the test for the hour main effect, we can proceed as follows, testing the intercept in the between-subjects model and specifying the idata, idesign, and iterms arguments to linearHypothesis:

```
> linearHypothesis(mod.ok, "(Intercept) = 0", idata=idata,
```

```
+ idesign=~phase*hour, iterms="hour") # test hour main effect
```

```
. . .
```

Multivariate Tests:

	Df	test stat	approx F	num Df	den Df	Pr(>F)
Pillai	1	0.933	24.32	4	7	0.000334
Wilks	1	0.067	24.32	4	7	0.000334
Hotelling-Lawley	1	13.894	24.32	4	7	0.000334
Roy	1	13.894	24.32	4	7	0.000334

- Alternatively and equivalently, we can generate the response-transformation matrix P for the hypothesis directly:
- > (Hour <- model.matrix(~ hour, data=idata))</pre>

	(Intercept)	hour.L	hour.Q	hour.C	hour^4
1	1	-6.325e-01	0.5345	-3.162e-01	0.1195
2	1	-3.162e-01	-0.2673	6.325e-01	-0.4781
3	1	-3.288e-17	-0.5345	2.165e-16	0.7171
	•				
14	1	3.162e-01	-0.2673	-6.325e-01	-0.4781
15	1	6.325e-01	0.5345	3.162e-01	0.1195

> linearHypothesis(mod.ok, "(Intercept) = 0",

+ P=Hour[, c(2:5)]) # test hour main effect (equivalent)

(output omitted)

• These tests simply duplicate part of the output from Anova, but suppose that we want to test the individual polynomial components of the hour main effect, such as the quadratic component:

```
> linearHypothesis(mod.ok, "(Intercept) = 0",
+ P=Hour[, 3, drop=FALSE]) # quadratic
```

```
Response transformation matrix:

hour.Q

pre.1 0.5345

pre.2 -0.2673

pre.3 -0.5345

...

fup.4 -0.2673

fup.5 0.5345
```

```
(output continued ...)
```

```
(... output concluded)
```

```
Sum of squares and products for error:
hour.Q
hour.Q 46.64
```

Multivariate Tests: Df test stat approx F num Df den Df Pr(>F) Pillai 0.834 50.19 10 0.0000336 1 1 Wilks 1 0.166 50.19 1 10 0.0000336 5.019 50.19 1 10 0.0000336 Hotelling-Lawley 1 5.019 50.19 1 10 0.0000336 Roy 1

(日) (同) (三) (三)

- Anderson, E. (1935). The irises of the Gaspé Peninsula. Bulletin of the American Iris Society, 59:2–5.
- Dalgaard, P. (2007). New functions for multivariate analysis. *R News*, 7(2):2-7.
- Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. *Annals of Eugenics*, 7, Part II:179–188.
- Fox, J. and Weisberg, S. (2011). An R Companion to Applied Regression. Sage, Thousand Oaks, CA, second edition.
- O'Brien, R. G. and Kaiser, M. K. (1985). MANOVA method for analyzing repeated measures designs: An extensive primer. *Psychological Bulletin*, 97:316–333.