Gaussian copula regression using R

Guido MasarottoCristiano VarinUniversity of PaduaCa' Foscari University, Venice

Framework

Gaussian copula marginal regression models

- different types of responses: continuous, discrete, categorical
- several forms of possible dependence:
 - time series
 - Iongitudinal/panel studies
 - spatial data
 - ٠..
- likelihood analysis
- alternative to generalized estimating equations
- R package gcmr

Model specification

1) response Y_i related to covariates vector \boldsymbol{x}_i and error ϵ_i by

$$Y_i = F^{-1} \left\{ \Phi(\epsilon_i) | \boldsymbol{x}_i; \boldsymbol{\lambda} \right\}, \quad i = 1, \dots, n,$$

where

- $F(y_i | \boldsymbol{x}_i; \boldsymbol{\lambda})$ is c.d.f. of Y_i given \boldsymbol{x}_i
- $\Phi(z)$ is c.d.f. of N(0,1)

2) multivariate normal errors

$$\boldsymbol{\epsilon} = (\epsilon_1, \ldots, \epsilon_n)^{\mathsf{T}} \sim \mathsf{MVN}(\mathbf{0}, \boldsymbol{\Omega}),$$

correlation matrix Ω parametrized so to reflect various types of dependence (time series, clustered data, spatial data, etc.)

Gaussian copula marginal regression

- copulas conveniently separate marginals (regression model) from the dependence component
- possible marginals: GLMs, skew-normal models, Weibull regression, beta regression, zero-inflated models, ...
- accommodate various forms of dependence through suitable choice of the copula correlation matrix:
 - ▶ longitudinal data: ARMA(p,q), exchangeable, unstructured
 - time series: ARMA(p,q)
 - spatial data: Matérn correlation matrix
- Gaussian copula attractive because inherits several well-known properties of multivariate normal
- special case: multivariate probit regression

Likelihood analysis

- continuous case: likelihood (nicely) in closed-form
- noncontinuous case: likelihood is awkward *n*-dimensional normal integral
 - ▶ hard to handle if *n* is not (very) small
 - generalization of the multivariate probit likelihood
 - many methods for fitting multivariate probit
 - ▶ gold standard (?): Geweke-Hajivassiliou-Keane simulator
 - efficient and relatively easy to program
 - implemented in gcmr

Package gcmr

CRAN Mirrors What's new? Task Views Search

About R <u>R Homepage</u> <u>The R Journal</u>

Software <u>R Sources</u> <u>R Binaries</u> <u>Packages</u> <u>Other</u>

Documentation <u>Manuals</u> <u>FAQs</u> <u>Contributed</u> gcmr: Gaussian Copula Marginal Regression

likelihood inference in Gaussian copula marginal regression models

Version:	0.1			
Priority:	optional			
Depends:	$R (\geq 2.10), \underline{nlme}, \underline{sandwich}, \underline{sn}, \underline{geoR}, \underline{sp}$			
Published:	2011-08-10			
Author:	Guido Masarotto and Cristiano Varin			
Maintainer:	Guido Masarotto <guido.masarotto@unipd.it> and Cristiano Varin <sammy at="" unive.it=""></sammy></guido.masarotto@unipd.it>			
License:	<u>GPL (≥ 2)</u>			
CRAN checks: gcmr results				
CIVAIN CHECKS	. genn results			

Downloads:

Package source: gcmr 0.1.tar.gz MacOS X binary: gcmr 0.1.tgz Windows binary: gcmr 0.1.zip Reference manual: gcmr.pdf

Package gcmr

- > library(gcmr)
- > args(gcmr)

function(formula, data, subset, offset, contrasts = NULL, marginal, cormat, start, fixed, options = gcmr.options())

nonstandard arguments:

- marginal marginal model
- cormat Gaussian copula correlation matrix
- start optional starting values
- fixed parameters fixed to a priori values
- options various options, such as fix the pseudorandom seed, number of Monte Carlo replications, choice of the optimizator (default is nlminb), ...

Package gcmr: model specification

marginal class marginal models

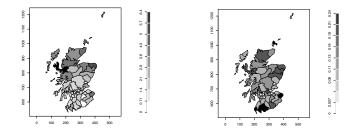
```
gs.marg(link=linear) Gaussian
bn.marg(link=logit) binomial
ps.marg(link=log) Poisson
nb.marg(link=log) negative binomial
sn.marg(link=linear) skew-normal Azzalini (2005)
```

cormat class correlation matrices

```
ind.cormat() working independence
arma.cormat(p,q) ARMA(p,q)
cluster.cormat(id, type) cluster/longitudinal
type={AR(1), MA(1), exch, unstr}
matern.cormat(D, k) Matérn spatial correlation
D distance, k smoothness parameter
```

user can specify more marginals and correlation matrices

- incidence of male lip cancer in Scotland during 1975-1980
- response: observed cases Y_i in each county of Scotland (n = 56), also available expected cases E_i
- question: excess of cases associated with proportion of population employed in agriculture, fishing or forestry (AFF)?
- need model for spatially correlated counts



standardized morbidity ratio Y/ E

AFF

- standard non-spatial analysis of these data:
 - \blacktriangleright observed cases Y_i negative binomial with mean

$$\mu_i = E_i \exp(\beta_0 + \beta_1 \mathsf{AFF} + \beta_2 \mathsf{latitude})$$

- scale parameter κ
- complement this independence model with spatial variability:
 - Gaussian copula with Matérn correlation matrix

- > library(xtable); library(gcmr)
- > data(scotland)
- > D.scot <- spDists(cbind(scotland\$longitude,</pre>

+ scotland\$latitude), longlat = TRUE)

- > m <- gcmr(observed ~ offset(log(expected)) +</pre>
- + AFF + I(latitude/100), data = scotland,
- + marginal = nb.marg(link=log),
- + cormat = matern.cormat(D.scot, k=0.5),

> xtable(cbind(coef = coef(m), se = se(m)))

	coef	se
(Intercept)	-20.80	4.58
AFF	4.30	1.43
l(latitude/100)	36.74	8.06
kappa	0.17	0.06
range	14.36	6.19

gcmr: methods

available methods:

• profile likelihood

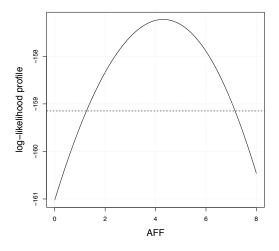
• quantile residuals

• variance-covariance matrix of estimators

se(object, type) for standard errors

• and other common methods: coefficients, loglik, estfun, bread, ...,

> profile(m, which = 2, low = 0, up = 8, alpha=0.05)



dashed line is 0.95% confidence interval

Model checking

• continuous case:

model adequacy checked through quantile residuals

$$R_i = \Phi^{-1}\{F(Y_i|y_{i-1},...,y_1;\hat{\theta})\}$$

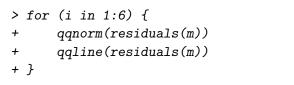
if model correct $R_i \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1)$

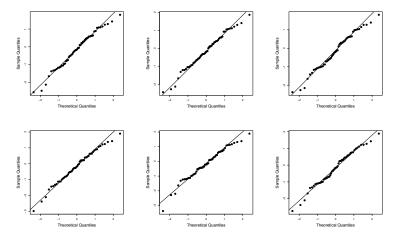
- noncontinuous case:
 - ► randomized quantile residuals Dunn and Smyth (1996)

$$R_i^{\mathsf{rnd}}(U_i) = \Phi^{-1}\{M_i^- + U_i(M_i - M_i^-)\},\$$

where $U_i \stackrel{\text{iid}}{\sim} U(0,1)$ and $M_i^- = F(Y_i^-|y_{i-1},\ldots,y_1;\hat{\theta})$ $(M_i^- \text{ is left-hand limit at } Y_i^-)$

- if model correct $R_i^{\text{rnd}} \stackrel{\text{iid}}{\sim} N(0,1)$ but
- because of the randomness, it is appropriate to inspect several sets of residuals before taking a decision about the model





Ohio children wheeze data

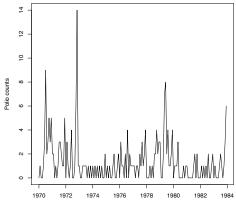
- package geepack: the dataset is a subset of the six-city study, a longitudinal study of the health effects of air pollution.
- 537 children, four annual measurements each
- variables: resp wheeze status (1=yes, 0=no) id children id age children' age smoke indicator of maternal smoking
- standard analysis: logistic GEEs
- regressors: age, smoke and interaction

> library(geepack) > data(ohio) > m <- gcmr(cbind(resp, 1 - resp) ~</pre> age + smoke + age:smoke, + data = ohio, marginal = bn.marg(link=logit), + cormat = cluster.cormat(ohio\$id, type = "ar1"), + options = list(seed = 123)) + > xtable(cbind(coef = coef(m), + se.hessian = se(m, "hessian"), se.vscore = se(m, "vscore"), + se.sandwich = se(m, "sandwich"))) +

	coef	se.hessian	se.vscore	se.sandwich
(Intercept)	-1.91	0.12	0.12	0.11
age	-0.15	0.07	0.07	0.06
smoke	0.29	0.18	0.18	0.18
age:smoke	0.08	0.10	0.11	0.10
ar1	0.67	0.04	0.03	0.04

Polio incidences in USA

- time series of monthly Polio incidences in USA in 1970-1983
- question: evidence of decreasing trend of Polio in 1970-1983?
- need a regression model for serially correlated counts
- correct for seasonality

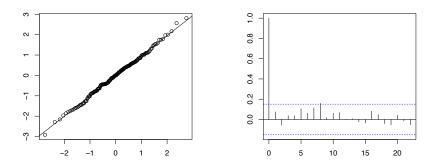


>	data(polio)
>	fit <- gcmr(y ~ ., data = polio,
+	<pre>marginal = nb.marg(link=log),</pre>
+	<pre>cormat = arma.cormat(2, 1),</pre>
+	options = list(seed = 71271))
>	<pre>xtable(cbind(coef = coef(fit),</pre>
+	se.hessian = se(fit, "hessian"),
+	<pre>se.sandwich = se(fit, "sandwich"),</pre>
+	<pre>se.hac = se(fit, "hac")))</pre>

	coef	se.hessian	se.sandwich	se.hac
(Intercept)	0.21	0.12	0.12	0.13
trend	-4.29	2.30	2.32	2.56
$\cos(2\pi t/12)$	-0.12	0.15	0.15	0.15
$\sin(2\pi t/12)$	-0.50	0.16	0.16	0.19
$\cos(2\pi t/6)$	0.19	0.13	0.13	0.13
$\sin(2\pi t/6)$	-0.40	0.13	0.13	0.13
κ	0.57	0.17	0.17	0.17
ar1	-0.51	0.23	0.26	0.27
ar2	0.31	0.09	0.09	0.09
ma1	0.68	0.24	0.27	0.28

Polio time series

- > qqnorm(residuals(fit))
- > qqline(residuals(fit))
- > acf(residuals(fit))



Conclusions

- Gaussian copula marginal regression: flexible framework for modelling dependence
- can be used to extend many regression models for independent data already available in other R packages
- future (!): more models, in particular zero-inflated responses, ordinal and multinomial responses
- future (?): pairwise likelihood for high-dimensional problems
- future (??): other methods for maximum simulated likelihood (MCMC?), MCEM
- some theory and computational details can be found in Masarotto, G. and Varin, C. (2011). Gaussian copula marginal regression (preprint available upon request)
- future theoretical work: robustness to copula misspecification