Higher-Order Likelihood Inference in Meta-Analysis Using R

Annamaria Guolo and Cristiano Varin

University of Verona and Ca' Foscari University of Venice annamaria.guolo@univr.it; sammy@unive.it

useR! 2011, University of Warwick

Outline Meta-analysis Likelihood inference MetaLik Conclusion

Outline

- Traditional meta-analysis and random-effects models
- First-order likelihood inference
- Higher-order asymptotics
 - second-order adjustment of the likelihood ratio statistic
 - meta-analysis and meta-regression problems
- R package metaLik
- Example
- Concluding remarks and open problems

utline Meta-analysis Likelihood inference MetaLik Conclusion

Meta-analysis

- ullet The process of combining and analyzing the results from K separate studies about the same issue of interest
- Aim: providing an overall estimation of a true effect β
- Typical in medical and epidemiological investigation
- Recent applications involve different areas of research, such as sociology, behavioral sciences, economics

Roberts (2005); Sutton & Higgins (2008)

Linear mixed-effects model for meta-analysis

- Y_i : measure of β from the i-th study (e.g., log-odds ratio)
- σ_i^2 : within-study variance of the estimator of eta
- Assumption: sample size of each study large enough to judge σ_i^2 as known, $\sigma_i^2=\hat{\sigma}_i^2$
- Common meta-analysis model: linear random-effects model

$$Y_i = \beta_i + e_i, \ e_i \sim N(0, \hat{\sigma}_i^2)$$

with

$$\beta_i = \beta + \varepsilon_i, \ \varepsilon_i \sim N(0, \tau^2)$$

- e_i and ε_i independent; marginally, $Y_i \sim N(\beta, \hat{\sigma}_i^2 + \tau^2)$
- au^2 : variance component accounting for between-study heterogeneity

Meta-regression

- Extension of meta-analysis to include study-specific covariates
- Way of explaining sources of between-study heterogeneity
- X_i : vector of p covariates available at the aggregated meta-analysis level for study i, including the first value equal to one
- Meta-regression model

$$Y_i \sim N(X_i^{\top} \underline{\beta}, \hat{\sigma}_i^2 + \tau^2),$$

with $\underline{\beta}$ the fixed-effects p-dimensional vector Thompson & Higgins (2002); Knapp & Hartung (2003)

• If X_i equal to one, $i=1,\ldots,K$, the meta-regression model coincides with the meta-analysis model.

Standard approach to meta-analysis

- DerSimonian and Laird's (1986) approach
- ullet Estimate of eta as a weighted mean of Y_i

$$\hat{\beta}_{DL} = \frac{\sum_{i=1}^{K} Y_i / (\hat{\sigma}_i^2 + \hat{\tau}^2)}{\sum_{i=1}^{K} 1 / (\hat{\sigma}_i^2 + \hat{\tau}^2)},$$

with $\hat{\tau}^2 = t$ (for t > 0), where

$$t = \frac{\hat{q} - (K - 1)}{\sum_{i=1}^{K} \hat{\sigma}_i^{-2} - \sum_{i=1}^{K} \hat{\sigma}_i^{-4} / \sum_{i=1}^{K} \hat{\sigma}_i^{-2}}$$

and $\hat{\tau}^2 = 0$ otherwise. It is a biased estimate of τ^2 .

- $var(\hat{\beta}_{DL}) = 1/\sum_{i=1}^{K} (\hat{\sigma}_i^2 + \hat{\tau}^2)^{-1}$
- ullet Normal approximation of the distribution of the eta estimator
- The method does not account for the uncertainty in estimating $\tau^2 \to \text{unreliable inferential conclusions}$
- Straightforward extension to meta-regression

- Whole parameter vector $\psi = (\theta, \lambda)^{\top}$
 - scalar interest component θ : one component of the fixed-effects vector β
 - nuisance component λ : remaining elements of eta plus au^2
- For scalar θ , inference can rely on the signed profile log-likelihood ratio

$$r_P(\theta) = \operatorname{sign}(\hat{\theta} - \theta) \sqrt{2\{\ell_P(\hat{\psi}) - \ell_P(\tilde{\psi})\}},$$

- $\ell_P(\cdot)$: profile log-likelihood
- $\hat{\psi}=(\hat{\theta},\hat{\lambda})^{\top}$: MLE, not in closed-form in meta-analysis and meta-regression
- $\tilde{\psi} = (\theta, \hat{\lambda}_{\hat{\theta}})^{\top}$: constrained MLE for a fixed θ
- Under mild regularity conditions, $r_P(\theta) \stackrel{d}{\to} N(0,1)$, up to an error of order $O(n^{-1/2})$ Severini (2000)
- Questionable accuracy, especially in case of small sample sizes, as in meta-analysis or meta-regression problems

Higher-order inference

Aim: improving the accuracy of the first-order asymptotic results

• Skovgaard's adjustment

Skovgaard (1996)

$$\overline{r}_P(\theta) = r_P(\theta) + \frac{1}{r_P(\theta)} \log \frac{\overline{u}_P(\theta)}{r_P(\theta)},$$

where

$$\overline{u}_P(\theta) = [S^{-1}q]_{\theta}|\hat{j}|^{1/2}|\hat{i}|^{-1}|S||\tilde{j}_{\lambda\lambda}|^{-1/2}$$

is a correction term, involving

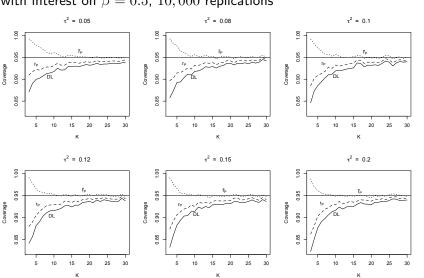
- \hat{j} : observed information matrix evaluated at $\hat{\psi}$;
- \hat{i} : expected information matrix evaluated at $\hat{\psi}$;
- $\tilde{j}_{\lambda\lambda}$: subblock of j corresponding to λ , evaluated at $\tilde{\psi}$;
- $[S^{-1}q]_{\theta}$: component of the vector $S^{-1}q$ corresponding to θ , where S and q are covariances of likelihood quantities.

Skovgaard's statistic $\overline{r}_P(\theta)$: properties

- N(0,1) approximation up to an error of order $O(n^{-1})$
- Third-order accuracy in a full exponential family (unlikely, when $\hat{\sigma}_i^2 = \hat{\sigma}^2$)
- Well defined for a wide class of parametric models
- Invariant w.r.t. interest-respecting reparametrizations
- Components S and q with a compact form
- Complexity of components S and q similar to that of the expected information matrix
- Simulations studies indicate a performance superior to $r_P(\cdot)$ in terms of accuracy when approximating N(0,1), under different scenarios.

Simulation study

Empirical coverages of confidence intervals; meta-analysis model with interest on $\beta=0.5;\ 10,000$ replications



rtline Meta-analysis Likelihood inference MetaLik Conclusion

metaLik package

- R package for likelihood inference in meta-analysis and meta-regression
- First-order likelihood inference based of the signed profile log-likelihood ratio statistic $r_P(\cdot)$ and its second-order Skovgaard's (1996) adjustment $\overline{r}_P(\cdot)$
- Comparison with DerSimonian and Laird's (1986) approach
- Hypothesis testing and confidence intervals for the fixed-effects components
- Extension to heterogeneity component au^2 under development

Vaccine data

- K=13 clinical studies on the efficacy of the Bacillus Calmette-Gurin (BCG) vaccine for preventing tuberculosis Berkey et al. (1995); Knapp & Hartung (2003)
- y_i: logarithm of the risk ratio in the i-th trial
- x_i: distance of the i-th study from the equator (latitude), surrogate for the presence of environmental mycobacteria providing a level of natural immunity against tuberculosis
- Meta-regression model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \ \varepsilon_i \sim N(0, \hat{\sigma}_i^2 + \tau^2)$$

- Inferential interest is mainly on β_1
- DerSimonian and Laird's test for $\beta_1=0$: -2.475 (p-value=0.013)

metaLik function

Implements first- and second-order likelihood inference

```
library(metaLik)
data(vaccine)
m <- metaLik(y~latitude, data=vaccine, sigma2=vaccine$sigma2)
m
Call:
metaLik(formula=y~latitude, data=vaccine, sigma2=vaccine$sigma2)</pre>
```

Coefficients:

```
(Intercept) latitude tau^2
-0.30500 -0.01542 0.16756
```

Variance/covariance matrix:

```
(Intercept) latitude tau^2

(Intercept) 5.020e-02 -1.101e-03 -2.629e-03

latitude -1.101e-03 4.056e-05 3.600e-05

tau^2 -2.629e-03 3.600e-05 1.050e-02
```

Maximized log-likelihood:

[1] 1.121

Vaccine data analysis: summary

Adds information about the significance of the parameters

```
summary(m)
```

Likelihood inference in random effects meta analysis models

```
Call:
```

```
metaLik(formula=y~latitude, data=vaccine, sigma2=vaccine$sigma2)
Est. heterogeneity component tau^2: 0.1676 (std.err. 0.1025)
```

Fixed effects:

```
p-value
                                                           p-value
         estimate
                  std.err. signed logLRT
                                                 Skovgaard
(Intercept)-0.3051
                    0.2241
                                -1.3380
                                         0.1809
                                                  -1.2246
                                                            0.2207
latitude
          -0.0154
                    0.0064
                                -2.1202
                                         0.0340
                                                  -1.8163
                                                            0.0693
```

Log-likelihood: 1.1212

test.metaLik function

```
Hypothesis testing on a scalar component of the fixed-effects vector, using r_P(\cdot) and \overline{r}_P(\cdot)
```

```
##Test on latitude coefficient
test.metaLik(m, param=2, value=0, alternative='less')
```

Signed profile log-likelihood ratio test for parameter latitude

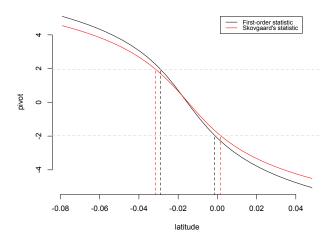
```
First-order statistic
r:-2.12, p-value:0.01699
Skovgaard's statistic
rSkov:-1.816, p-value:0.03466
alternative hypothesis: parameter is less than 0
```

profile.metaLik function

-0.03146

##95% confidence interval for the latitude coefficient profile.metaLik(m, param=2, level=0.95, plot=TRUE) 2.5% 97.5% signed logLRT -0.02897 -0.00141 Skovgaard

0.00146



utline Meta-analysis Likelihood inference MetaLik Conclusions

Conclusions and open problems

metaLik:

- likelihood approach for meta-analysis and meta-regression
- inference on a scalar parameter of interest
- signed profile log-likelihood ratio statistic and Skovgaard's second-order statistic

Higher-order asymptotics:

- advantages over standard meta-analysis techniques
- superior to first-order results in terms of accuracy
- especially for small sample sizes

Open problems:

- between-study heterogeneity problems
- extension to generalized linear and to nonlinear mixed models
- empirical studies suggest Skovgaard's proposal improves on first-order solutions, but theoretical investigation is needed

Guolo, A. (2011). Higher-order likelihood inference in meta-analysis and meta-regression. *Submitted*.