
Dept. of Statistics

My first package

Uwe Ligges

useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 2

Contents

Introduction and the usefulness of R packages

Installation and administration of R packages in libraries

Make the build tools work under Unix, Mac OS, and Windows

Using R CMD build, INSTALL, check

Development of R packages

Data

Functions

Documentation format and processing

C Code

Scoping issues

Namespaces

Debugging

Let me start with some excerpts of a beginners R course.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 3

Benefits and drawbacks of R

Benefits

Open Source

Not a ‘black box’

Within current research

Extendability

...

Support

...

Drawbacks

...

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 4

What is R?

A language and environment for data analysis and graphics

Open Source

Tools for transfer of technology and methods using packages

Data access mechanism ...

...

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 5

Where can I get R from?

R has some homepage http://www.R-Project.org and there is the

CRAN (Comprehensive R Archive Network):

http://CRAN.R-Project.org:

R sources and binaries for some operating systems

Many more than 2000 R packages for various (statistical) methods

...

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 6

Functions

All work is applied using functions.

Defaults are documented on the help pages.

...

Everything is an object (both data and functions)!

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 7

Help me!

Start the help system help.start()

in a browser

Help on a function help("functionname")

?functionname

Similar functions apropos("functionname")

search by keyword help.search("keyword")

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 8

Editors for R

In the R command line it is easy to quickly calculate things, but writing

functions is not very convenient.

Hence it is recommended to choose an appropriate editor.

A function can be saved in some kind of a text file on the hard disc

and reloaded with source("filename").

Tiny functions and code pieces can be submitted via Copy&Paste.

Syntax highlighting, auto-completion and other features are

desirable.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 9

Editors for R

ESS (Emacs Speaks Statistics,

http://cran.r-project.org/other-software.html) for the

well known Emacs or XEmacs editor. With ESS it is possible to use

(X)Emacs to control statistics software such as R and others

conveniently.

For Windows, the free editor Tinn-R

(https://sourceforge.net/projects/tinn-r) is available

as well as the R–WinEdt interface for the commercial editor WinEdt

(not ready for WinEdt 6.x)

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 10

Packages

Package: structured, standardized unit of R code, documentation,

data, external code, ...

Packages are loaded by library("Packagename") and unloaded

by detach().

Help on packages (instead of functions) can be accessed by

library(help = "Packagename").

On CRAN there are more than 2000 packages available - on all

(un)thinkable topics you can(not) imagine.

The Omega(hat) and BioConductor projects are maintaining their

own package repositories.

An R standard installation loads the packages base, datasets,

graphics, grDevices, methods, stats and utils on startup.

Several package (including base) are shipped with R,

as well as several important recommended packages.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 11

additional ‘standard packages’

base R base package

datasets Collection of datasets

graphics Graphics functions

grDevices Graphics devices

grid Re-design for graphics layout (e.g. for lattice)

methods S 4 methods (Chambers, 1998)

splines Splines

stats Common statistical functions (tests, ...)

stats4 Same as stats with S 4 classes

tcltk GUI programming with tcl/tk

tools Tools for package development, administration, documentation

utils Some helper functions

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 12

additional ‘recommended packages’

boot Bootstrap methods (Davison and Hinkley, ’97)

cluster Cluster methods (Rousseeuw et al.)

codetools Code analysis

foreign Import and export from and to Minitab, S, SAS, SPSS, Stata, ...

KernSmooth Kernel density estimation and smoothing (Wand & Jones, ’95)

lattice Trellis graphics (Cleveland, ’93)

Matrix Matrix classes (e.g. for sparse matrices)

mgcv Generalized additive models

nlme (Non-) linear models with mixed effects (Pinheiro & Bates, ’00)

rpart Recursive partitioning

survival Survival analysis (hazard, Cox, censoring)

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 13

Packages by V&R

class Classification

MASS Collection of functions by Venables and Ripley (2002)

nnet Neural nets (feed-forward) with one hidden layer

— and multinomial log-linear models

spatial Spatial statistics

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 14

Extensions

R is extremely extensible by the user. It is possible to

write your own functions,

generate standardized documentation for these functions,

integrate C, C++, or Fortran code in form of a shared library (DLL),

create packages that include the before mentioned things and that

can easily be installed and distributed.

If you have written some useful code that implements some interesting

method, you might want to publish it on CRAN in form of a package -

like many others did already.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 15

Why Packages?

Why should we package anything?

Dynamical loading of packages (saves memory).

Easy installation and update of packages (locally or from the web),

within R or from the OS’s command line.

Easy administration – use global (department’s server) and local

libraries at the same time.

Validation – R includes features for checking code, documentation

and installability, as well as testing the results of pre-defined

calculations.

easy distribution to others using a standard mechanism.

Example data.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 16

The S-PLUS (8) package system and CSAN

Copyright © 1999 – 2006

Insightful Corporation, All Rights Reserved.
8

Proposed S-PLUS® Packages

An S-PLUS® package is a collection of S-PLUS®

functions, data, help files and other associated source
files that have been combined into a single entity for
distribution to other S-PLUS® users.
This package system is modeled after the package
system in R.
Insightful Corporation hosts the Comprehensive
S-PLUS® Archival Network (CSAN) site at
http://csan.insightful.com/ to facilitate S-PLUS®

package distribution.
Packages can be downloaded from the CSAN websites
in two forms: as raw source code or as Windows
binaries.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 17

Load packages from libraries

Installed R packages live in a library, i.e. some directory

and can be loaded from that library by

library("Packagename", lib.loc = Path_to_library)

.libPaths() shows which libraries are looked up for packages

automatically

A library can be added by .libPaths() to the search path

or the library can be set before the start of R in the environment

variable R_LIBS, e.g. in file .Renviron:

R_LIBS=/home/user/myR/myLibrary;/home/user/myR/develLibrary

Both base and recommended packages are in the main library in

directory R_HOME/library

R_HOME is the path that points to the current version of R , e.g.

/usr/local/lib/R or c:\Program Files\R-x.y.z.

Default is to install new packages into the first place of the result of

.libPaths().
Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 18

Load packages from libraries

Examples:

library(help = "survival") # help

library("survival") # load

detach("package:survival") # unload

.libPaths("c:/temp") # set library

.libPaths()

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 19

Libraries

More than one library makes sense:

Structuring packages

Developer and user library

central installation (no write permission for users) vs. local library of

own packages

Examples:

central library of standard packages, e.g.

n:\software\R-x.y.z\library,

central library of CRAN packages, e.g. n:\software\Rlibs\CRAN,

central library of BioC packages, e.g. n:\software\Rlibs\BioC,

local user library, e.g. d:\something\myRlibs\work,

local developer library, e.g. d:\something\myRlibs\devel.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 20

Package administration

Documentation:

Manual ‘R Installation and Administration’

‘The R FAQ’ and ‘R for Windows FAQ’

‘R Help Desk: Package Management’ in R News 3(3)

Repositories:

CRAN (+ CRAN extras for Windows), BioConductor, Omega

setRepositories() or options("repos" = ...)

for selecting repositories

chooseCRANmirror() and chooseBioCmirror()

for choosing mirror servers

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 21

Package administration

install.packages("package", lib = "/Path/to/library")

automatically downloads the most recent version of a package from

the repositories and installs it,

no need to specify lib, if the first place of the search path is the

right library,

the argument dependencies = TRUE implies to install all declared

dependent and suggested packages of the package.

update.packages()

installs new versions of packages from the repositories

argument checkBuilt = TRUE implies recompiling of packages

after a major upgrade of R .

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 22

Package administration

Summary of R functions:

available.packages() packages in selected repositories

download.packages() download packages

install.packages() install packages

installed.packages() locally installed package

new.packages() package in repository that are not installed locally

old.packages() locally installed package with newer versions in the

repository

update.packages() update package

contrib.url() generates canonical form of repository

packageStatus() considered to be the future (since several years)?!

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 23

Package administration – binary packages

The argument type in install.packages(), update.packages()

and friends can be set to

"source"

"win.binary"

"win64.binary"

"mac.binary.leopard"

"mac.binary"

The default is the appropriate binary type on Windows and on the CRAN

binary Mac OS X distribution, otherwise it is "source". These can be

overridden to install from sources under Windows, for example.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 24

32- vs. 64-bit Windows binaries

Currently (R-2.11.x), we have separate 32-bit and 64-bit R distributions

for Windows.

For the next major R release (R-2.12.0) expected in October:

use of more modern gcc compilers (gcc-4.4.x or 4.5.x)

bi-arch binaries for both R and packages.

That means some minor parts of this tutorial will be outdated end of

October.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 25

Package administration – binary packages

Some tools are missing on typical Windows systems

Windows shell (command line) differs from typical Unix systems

For CRAN like repositories, R looks for packages in, e.g.

CRAN-mirror/bin/windows/contrib/2.11/.

ReadMe contains information what happened to packages not

passing R CMD check .

GUI available for R under Windows:
”
Packages“ provides the

interface for install.packages() etc.

(all installations into .libPaths()[1] !).

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 26

Package administration – local binary packages

Example:

Install the binary package MyPackage from the local file

c:\somewhere\MyPackage_0.0-1.zip into c:\myR\myLibrary:

> install.packages(

+ "c:/somewhere/MyPackage_0.0-1.zip",

+ lib = "c:/somewhere/myLibrary", CRAN = NULL)

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 27

CRAN Task Views

CRAN contains more than 2000 packages: Confusing!!!

CRAN Task Views: Provide some summary and structure by topics

grouping of packages (also by priority)

administration package: ctv (Zeileis and Hornik, 2006)

which structure is available: available.views()

install all packages of one group: install.views()

Examples:

library("ctv")

(temp <- available.views())

temp[[8]]

install.views("MachineLearning", coreOnly = TRUE)

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 28

Source vs. binary packages

Source packages are independent of the platform (hardware,

operating system).

Prerequisites for installing source packages: Perl, C(++) compiler,

Fortran compiler,

CRAN accepts only source packages

Standard way of distributing packages for Unix-like systems (Linux,

Solaris, . . .).

Binary packages are platform-specific and may depend on the R

version in use.

Binary packages can be installed without prerequisites: ‘shared object

files’ and DLL, help pages, meta information are already precompiled

in a binary package.

CRAN provides binary packages for recent R versions for some

platforms, e.g. Windows and MacOS X (PowerPC + Intel).

Binary packages for Windows are provided roughly two days after the

source packages appear.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 29

Source vs. binary packages

Distinction between binary and source packages by line starting with

Built: in file DESCRIPTION:

Built: R 2.11.1; i386-pc-mingw32; 2010-07-20 09:56:38; windows

File extensions (by agreement):

.tar.gz: Source package

.zip: binary package for Windows

.tgz: binary package for Mac,

.deb or .rpm: binary package for Linux

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 30

Package administration II

For locally available source package, it is more common to use the OS’s

command line:

$ R CMD INSTALL -l /Path/to/library Paket

If -l /Path/to/library is not given (to specify the library explicitly):

first library from environment variable R_LIBS is used

main library is used

.Renviron is not evaluated by R CMD

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 31

Source packages under Windows

Configure your environment:

See: R Development Core Team (2010a), Ligges and Murdoch

(2005)

R tools: http://www.murdoch-sutherland.com/Rtools

collection of cygwin based shell tools

MinGW gcc (4.2.1) distribution

libraries for bitmap/jpeg support

vanilla perl

libraries for tcl/tk support

LATEX (e.g. MiKTeX): http://www.miktex.org/

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 32

Source packages under Windows

Set paths (in environment variable ‘PATH’) to local (.) and all

...\bin paths (should happen automatically, if selected).

PATH=.;c:\devel\tools\bin;c:\devel\MinGW\bin;
c:\devel\R-2.11.1\bin;c:\devel\Perl\bin;
c:\devel\texmf\miktex\bin;%PATH%
Set environment variable ‘TMPDIR’ (otherwise ‘TEMP’ is used)

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 33

Structure of packages

A package consists of some standard files and directories, the latter

containing certain files as described in the manual Writing R Extensions:

DESCRIPTION (file) with standardized formatted entries for author,

license, title, dependencies, ...

NAMESPACE (file) for generating a Namespace

man/ (directory) contains documentation in *.Rd format.

R/ (directory) contains R code.

data/ (directory) contains data sets.

src/ (directory) contains C, C++, or Fortran sources.

tests/ (directory) contains files for validation.

demo/ (directory) contains R Code for demo purposes

inst/ (directory) contains stuff that is to be copied in the main

directory of a binary package (e.g. Vignettes).

Except for the DESCRIPTION file all other items above are optional.
Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 34

Package generation

Examples:

> package.skeleton(name = "MyPackage", ListOfObjects, path=".")

Creating directories ...

Creating DESCRIPTION ...

Creating READMEs ...

Saving functions and data ...

Making help files ...

Done.

Further steps are described in ./MyPackage/README

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 35

Package generation

package.skeleton():

generates a skeleton for package MyPackage

with files from ListOfObjects

in the given path (here the current working directory)

generates first version of the file DESCRIPTION

generates first versions for the documentation file in *.Rd format –

you just need to them fill out

tells us what to do next

Next steps are:

If all files have been edited, you can build the package by

R CMD build.

R CMD INSTALL installs the package.

R CMD check checks for consistency, installability, documentation ...
Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 36

Packages: Data and functions

Each data set and each function lives in a separate file

regularly named by object name

function close to each other (such as generics with methods) are

sometimes contained in one file

regularly with corresponding documentation in /man

Data can be loaded with data() and has to be put into the

data/ directory in one of the formats:

‘rectangular’ text file: separated by blank or comma, extension .csv,

.tab or .txt

R source code written by dump() (extension .r or .R), and

R binary file written by save() (extension .rda or .RData).

Code that should be executed once the package is loaded should go

into the file R/zzz.R.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 37

Packages: Documentation

Help pages written in Rd format

Manuals and reports: Package Vignettes with SWeave

Help pages:

package.skeleton() prepares all Rd files for a package

prompt() prepares a separate Rd file for one object to be

documented

LATEX like syntax

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 38

Packages: Documentation

Example for an *.Rd file:
\name Name of help page (commonly = \alias)

\alias Name(s) of function(s) that are described

\title title

\description short description

\usage function call including all arguments and their defaults

\arguments description of all arguments and their meaning

\value description of the returned value(s)

\details more detailed description

\references references (methods, implementation, algorithms)

\seealso links to other relevant documentation of other functions

\examples examples how to use the function

\keyword standardized keyword

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 39

Packages: Documentation

standardized defaults as well as self defined sections

allow for mathematical formulas, URLs, links to other help pages,

computation in and on help pages, etc.

Layouted documentation from *.Rd files can be generated directly

by

R CMD Rdconv for conversion to LATEX, HTML and formatted ASCII

text,

R CMD Rd2dvi for conversion to DVI and Adobe PDF.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 40

Packages: Documentation

The R packaging system checks (using R CMD check) if:

documentation is available for all (exported) data sets and functions

in a package

the \usage part corresponds to the actual definition of the function

the code in section \examples can be executed without any error

all the arguments of a function are documented

all the defaults are documented

.Rd files can be converted to the different formats

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 41

Vignettes

Vignettes

are in the installed package in form of PDF files

are in the source package in directory ./inst/doc

are shown with

vignette(package = "grid")

vignette("viewports", package = "grid")

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 42

SWeave

Generating vignettes using SWeave (Leisch, 2002):

Code + Text:

Text ...

<<Options>>=

Code chunk

@

... more text.

Sweave helps to integrate code and text automatically:

R evaluates the code and returns the results

LATEX renders the text

reproducible data analysis and research

easily re-generate reports with minor changes in the data

R CMD check checks whether code can be executed and evaluated

there is something called odfWeave ...

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 43

Package, install and check a package

Package, if all files have been generated:

R CMD build builds the package and generates the vignettes

Install: R CMD INSTALL

Check: R CMD check

Consistency, installability

Documentation (as mentioned before)

Test cases (.R files) in directory tests/.

Results (.Rout files) are compared with ‘true’ results (given as

.Rout.save files)

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 44

R-forge

R-forge (http://r-forge.r-project.org/) is a cental developer

platform for R packages offering easy access to the best in

SVN

daily built and checked packages

mailing lists, message boards/forums

bug tracking

site hosting

permanent file archival, full backups

total web-based administration.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 45

Submitting to CRAN

Be sure your package passes the checks without any WARNINGs or

ERRORs (in R-devel!).

Upload the source (!) package to

ftp://cran.r-project.org/incoming.

Send e-mail message to cran@r-project.org.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 46

What CRAN does

Initial check of the package on Linux

Make source package available in the repository

Make binaries available for various OSs (within less than a week)

Regular checks on different platforms

Check summary pages: http:

//cran.r-project.org/web/checks/check_summary.html

Package specific check summaries: http://cran.r-project.org/

web/checks/check_results_tuneR.html

Notifications in case the package is broken (by a change in a

dependency or R itself)

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 47

Win-builder

Builds Windows binaries and checks for validation of the R base

system.

Builds and checks new and updated packages – daily, at least for

R-release and R-devel.

Notification of developers.

Daily build of R-devel.

Re-check all packages for R-devel – weekly.

Aim: Make new errors of packages or R itself quickly visible to

developers.

Public system to build and check your won packages under Windows

if that is not available for you:

http://win-builder.r-project.org/.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 48

Win-builder

We need a check system that builds and checks at least within 24

hours for each flavor of R in order to

provide check results when still of interest

provide binaries directly after switching to alpha/beta/rc/release

phase.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 49

CRAN Windows Binaries’ Package Check 2010

Last updated on 2010-07-16 19:50:06 (last Friday) (simplified)

No Package Version R-2.11.1 Inst. time Check time

...

2458 zic 0.5-3 OK 36 17

2459 zipfR 0.6-5 OK 7 63

2460 zoeppritz 1.0-2 OK 1 16

2461 zoo 1.6-4 OK 4 62

2462 zyp 0.9-1 OK 1 18

Sum (in hours), 2x Xeon E5430 Quad: 6.9/8 50.6/8

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 50

C, C++, or Fortran code

Why do we want to have compiled code?

Speed

Make use of already existing external efficient libraries

Calling compiled external sources can be done by the interfaces

.C(), .Call(), .Fortran(), and .External().

A couple of important macros is defined in the header files

R.h and Rinternals.h.

Sometimes it is also useful to look into Rdefines.h for S4 and

friends.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 51

C, C++, or Fortran code

Code is compiled automatically during package installation:

R CMD INSTALL compiles code in the package (directory src/)

dyn.load(filename) loads and dyn.unload() unloads the

resulting library

library("packagename") should load it, if in a package

library.dynam() can be used in function .First.lib() in zzz.R

or define it in your Namespace (later on)...

R CMD SHLIB compiles the code without installing a whole

package, i.e. you can invoke compiler and linker manually

do never forget the garbage collector!

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 52

Example: C with .Call

As a simple example we are trying to add two real valued vectors a and

b by a call through .Call().

File c:\test.c:

#include <Rinternals.h>

SEXP add(SEXP a, SEXP b)

{

int i, n;

n = length(a);

for(i = 0; i < n; i++)

REAL(a)[i] += REAL(b)[i];

return(a);

}

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 53

Example: C with .Call

add, a, b: SEXP (Symbolic EXPression)

returning the a – still an R object

No new R object has been generated, hence no PROTECT() required

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 54

Example: C with .Call

Now we can generate a library from the C file test.c using

R CMD SHLIB :

$ R CMD SHLIB test.c

gcc -I"t:/R/include" -O3 -Wall -std=gnu99 -c test.c -o test.o

gcc -shared -s -o test.dll tmp.def test.o -Lt:/R/bin -lR

Some files are generated now, particularly file add.dll (Windows) or

add.so (Unix) respectively.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 55

Example: C with .Call

R code:

dyn.load("c:/test.dll") # load the library

or library("Packagename"), if in some package ...

Definition of the calling R function:

add <- function(a, b){

if(!is.numeric(a) || !is.numeric(b))

stop("a and b must be numeric")

if(length(a) != length(b))

stop("a and b must have same length")

.Call("add", as.double(a), as.double(b))

}

add(4:3, 8:9)

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 56

Functions

All work in R is done by functions.

A function call has the form

functionname(argument1 = arg1, argument2 = arg2, etc.),

where the arguments can be specified by name or not.

There are some special functions with convenient abbreviations such

as +.

You can rewrite 3 + 5 to its real function call: "+"(3, 5).

The name is not a regular one, hence the quotes.

An assignment has the full form: "<-"(x, 3).

There are arguments with defaults:

An argument without default must be specified in a function call.

An argument with default may be specified in a function call (and

the default may be changed).

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 57

Functions

Write your own functions in order to collect a sequence of other function

calls to do the same thing more than once, maybe with some parameters

changed.

A function definition looks like this:

MyFunction <- function(arguments){ statements },

where the arguments can be defined with or without defaults. When

the function is called, the arguments are passed to the statements.

Statements may consist of several lines, as far as they are enclosed in

braces (same is true for loops, for example).

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 58

Functions

A typical function definition might look like the following:

median <- function(x, na.rm = FALSE){

... many lines of code! ...

sort(x, partial = half)[half]

}

There are two arguments: x, na.rm.

Only the second argument has a default: FALSE.

The last line of the function defines its value. More than one object

can be returned as a list of objects. If return() is called, function

evaluation stops and the argument of return() is returned.

For a vector a, the following calls may be sensible:

median(a) (na.rm may be omitted, the default)

median(a, TRUE) (arguments ordered correctly, no names required)

median(na.rm = TRUE, x = a) (named arguments)
Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 59

Functions

So we have to distinguish between formal arguments in a function’s

definition and actual arguments as specified in the function call. The rules

to match actual and formal arguments are applied in the following way:

At first, all arguments with completely given names are matched

(x = 1:10).

Then, arguments with partially given names are matched to the

remaining formal arguments (na = TRUE).

Next, all unnamed arguments are assigned in the given order to the

remaining formal arguments.

All remaining arguments are assigned to the three dots argument:

...

You can test if a formal argument is missing in a call by missing().

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 60

Functions

It is possible to use the formal ‘three dots argument’ ... in the definition

of a function. All non-matching actual arguments (in the sense of not

matching to any other argument) are collected by This can be

handled within the function or (what is more common) passed to other

functions via

Examples:

ThreePoints <- function(x, ...){

x <- x - 2

median(x, ...)

}

x <- log(-1:100)

ThreePoints(x)

ThreePoints(x, na.rm = TRUE)

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 61

Lazy evaluation

R uses lazy evaluation of functions’ arguments, i.e. statements used as

actual arguments will be evaluated in their first usage, but not before:

Examples:

lazy <- function(x, calc = TRUE) {

if(calc) x <- x+1

print(a)

}

lazy((a <- 3), calc = FALSE)

lazy(a <- 3)

label <- function(x)

return(list(call = substitute(x), value = x))

label(1+2)

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 62

Scoping rules

During programming, the question arises: ‘When are what objects visible

for which functions?’

If you work in the R console directly, all new objects are created within

the workspace.

In (more complex) functions many objects are generated that are only of

temporary use. Hence it makes sense to evaluate functions in separate

environments, in order not to clutter the workspace with unneeded

objects. Therefore things are more transparent and less RAM is

consumed.

This means assignments within a function will not be saved in the

workspace. And objects from the workspace should be passed as

arguments to functions that require those objects.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 63

Scoping rules

Some more detailed comments related to Scoping Rules follow:

R keeps all environments in its main memory (RAM)

All top level generated R objects go into the workspace

(‘.GlobalEnv’), number 0.

There is some search path of environments containing packages (for

functions) and data bases (for data.fram,es). At the center there is

the ‘.GlobalEnv’ (workspace), at the end the base package and in

between some objects added to the path by calls to library() or

attach().

If a function is called, a new environment (starting with number 1)

is created.

If a function is called within the former function, the next

environment is generated.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 64

Scoping rules

Search rule is that a function looks for objects (a) in its own

environment, (b) the one of its parents, (c) the workspace and (d)

all the attached packages and data bases.

If a function returns, its environment is deleted (incl. all the objects

it contains). Therefore you have to return() objects for further

use.

The functions assign() and get() can assign objects to or

get objects from arbitrary environments.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 65

Scoping rules

-8 package:base

-7 Autoloads

...

-2 package:methods

-1 package:stats

0 .GlobalEnv # Workspace

1 environment 1 # Function 1

2 environment 2 # Function 2

3 environment 3 # Function 3

Type search() for the current search path.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 66

Scoping rules

Examples:

scope <- function()

{

x <- 3

inner <- function()

print(x)

inner()

}

scope() # --> R: 3 # --> S-Plus: ERROR

x <- 5

scope() # --> R: 3 # --> S-Plus: 5

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 67

Scoping rules

R is capable of so called Lexical Scoping (Gentleman, R. and Ihaka, R.,

2000).

This means a function that has been created in some specific

environment and assigned to some object outside of the function

afterwards, always knows all object of the originating environment.

Therefore, under such circumstances, an environment is not deleted (but

only if no function has been returned).

This feature might be beneficial but also confusing (because scoping

rules are different). In the latter case also consult Venables, W.N. and

Ripley, B.D. (2000).

There are some more exceptions from the described scoping rules, most

important one is implemented by namespace rules which will be described

later.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 68

Scoping rules

Examples:

l.scope <- function()

{

only.here <- 2

newFoo <- function()

print(only.here)

return(newFoo)

}

value <- l.scope()

value() # --> R: 2 # --> S-Plus: ERROR

only.here <- 4

value() # --> R: 2 # --> S-Plus: 4

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 69

Namespaces

Some more rules (in addition to the known scoping rules, how to search

objects in existing environments) have been introduced by R’s

Namespaces support.

The number of contributed packages increases almost daily, hence

you can expect name clashes of function between all those packages.

Namespaces define which objects are visible to the user and to other

functions, and which are only visible within the own namespace.

Functions that are not exported, are only visible within the own

namespace (and hidden to the user).

A namespace’s objects are independent of names of other

namespaces’ functions.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 70

Namespaces

Consider you define

foo <- function(x) sin(2 * pi * x)

then you probably expect that the objects sin() and pi are from

package base. If there are functions with the same names in other

packages or the workspace, the latter objects would be found before

those in base:

foo <- function(x)

sin(2 * pi * x)

foo(1:5) # Expected: [1] -2.449213e-16 -4.898425e-16

sin <- sum

pi <- 0.5

foo(1:5) # Sum of (1:5) = 15

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 71

Namespaces

A namespace guarantees that no objects from base are masked for

functions in other namespaces.

You can explicitly import objects from other namespaces. These

cannot be accidently overloaded afterwards. Packages loaded by

import directives are not attached to the search path.

A function from some namespace looks for objects according to the

following rules: at first it looks into the own namespace, then into

imported objects or namespaces, then into the base namespaces,

and then the already known scoping rules are applied.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 72

Namespaces

For explicit access to an object in a package with namespace the

‘::’ operator can be used, which separates the name of the

namespace and the object’s name. Hence, stats::ks.test

accesses the object (function) ks.test in namespace stats.

In rare cases, you want to access non exported functions which can

happen by calling getFromNamespace().

The operator ‘:::’ can access a non exported object as well.

fixInNamespace(): change / replace a function within a

namespace.

getS3method(): access a non-exported method.

getAnywhere(): all objects in the search path and loaded

namespaces are looked up.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 73

Namespaces

Examples:

library("MASS") # load MASS

lda # function lda: generic

methods(lda) # Which methods?

lda.default # lda.default is not exported

getS3method("lda", "default") # look at it anyway ...

getAnywhere("lda.default")

MASS:::lda.default

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 74

the file NAMESPACE

The file NAMESPACE in the toplevel directory of your package:

define objects to be imported and exported:

export() and exportPattern() (for exporting many objects at a

time)

define code to be loaded (in form of an external library such as a

DLL):

useDynLib()

define S3 methods:

S3method()

import() imports a whole namespace, importFrom() imports

objects from another namespace

S4 objects:

exportClasses(), exportMethods()

importClassesFrom(), importMethodsFrom()

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 75

the file NAMESPACE

Example:

useDynLib(myPackage)

export(foo2)

S3method(print, myClass)

import(klaR)

importFrom(MASS, lda)

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 76

Debugging

If you write your own functions, you will make mistakes!

If it is a small function, it may be easy to find the error.

In more complicated functions it may be worse to find a bug, leading

to nervous breakdowns.

R offers some tools for easy debugging.

It is advisable to debug your own package with deactivated

Namespace (i.e. just rename the NAMESPACE file and reinstall),

otherwise see ?debugInNamespace.

Beside those tools, you can print (print(), cat()) objects or

informative texts to the console, of course.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 77

Debugging with tools

traceback() shows which function has caused the last error,

including the stack (‘path’) of calls. This way you can find the bad

function even within very encapsulated function calls.

debug(foo) enables debugging for the function foo, i.e. it will be

executed within some browser (see below; until debugging is turned

off again with undebug(foo)).

browser() starts the browser at this place within a function.

recover() and options(error = recover): If an error

emerges, the browser is started so that you can jump into one of the

environments that existed at the time where the error occured.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 78

Debugging with tools

Examples:

foo1 <- function(x){ |foo1 <- function(x){ |foo1 <- function(x){

foo2 <- function(x,s)| foo2 <- function(x,s){| foo2 <- function(x,s){

x[[s]] + 5 | browser() | print(x)

y <- x + 1 | x[[s]] + 5 | x[[s]] + 5

foo2(y, s = -5) | } | }

} | y <- x + 1 | y <- x + 1

| foo2(y, s = -5) | foo2(y, s = -5)

|} |}

| |

foo1(1:5) |foo1(1:5) |foo1(1:5)

traceback() | |options(error = recover)

| |foo1(1:5)

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 79

References — Core manuals

Online at http://CRAN.R-Project.org/manuals.html and in R:

R Development Core Team (2010a): R Installation and

Administration. ISBN 3-900051-09-7.

R Development Core Team (2010b): R Language Definition.

ISBN 3-900051-13-5.

R Development Core Team (2010c): R: A Language and

Environment for Statistical Computing. ISBN 3-900051-07-0.

R Development Core Team (2010d): Writing R Extensions.

ISBN 3-900051-11-9.

The R Journal (formerly R News): http://journal.r-project.org/.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 80

References — R I

Chambers, J.M. (2008): Software for Data Analysis: Programming

with R, Springer, New York.

Gentleman, R. and Ihaka, R. (2000): Lexical Scope and Statistical

Computing. Journal of Computational and Graphical Statistics 9,

491–508.

Ihaka, R. and Gentleman, R. (1996): R: A language for data analysis

and graphics. Journal of Computational and Graphical Statistics 5,

299–314.

Leisch, F. (2002): Sweave User Manual.

http://www.ci.tuwien.ac.at/~leisch/Sweave

Ligges, U. (2003): R Help Desk: Package Management. R News

3(3), 37–39.

Ligges, U. and Murdoch, D. (2005): R Help Desk: Make ‘R CMD’

Work under Windows - an Example. R News 5(2), 27–28.

Uwe Ligges: My first R package useR!2010, Gaithersburg

Motivation Packages Administration Development R-forge, CRAN C, C++, Fortran Functions, Scoping Rules Namespace Debug References 81

References — R II

Murdoch, D. and Urbanek, S.(2009): The New R Help System. The

R Journal 1(2), 60–65.

Ripley, B.D. (2004): Lazy loading and packages in R 2.0.0. R News

4(2), 2–4.

Ripley, B.D. (2005a): Internationalization features of R 2.1.0. R

News 5(1), 2–7.

Ripley, B.D. (2005b): Packages and their management in R 2.1.0. R

News 5(1), 8–11.

Venables, W.N. and Ripley, B.D. (2000): S Programming, Springer,

New York.

Venables, W.N. and Ripley, B.D. (2002): Modern Applied Statistics

with S, 4th ed., Springer, New York.

Zeileis, A. and Hornik, K. (2006): ctv: CRAN Task Views. R package

version 0.3-2.

Uwe Ligges: My first R package useR!2010, Gaithersburg

