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Linear Models in Data Mining

As datasets grow wide—i.e. many more features than samples—the
linear model has regained favor in the dataminers toolbox.

Document classification: bag-of-words can leads to p = 20K

features and N = 5K document samples.

Image deblurring, classification: p = 65K pixels are features,
N = 100 samples.

Genomics, microarray studies: p = 40K genes are measured
for each of N = 100 subjects.

Genome-wide association studies: p = 500K SNPs measured
for N = 2000 case-control subjects.

In all of these we use linear models — e.g. linear regression, logistic
regression. Since p� N , we have to regularize.
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February 2009. Additional chapters on wide data, random forests,
graphical models and ensemble methods + new material on path
algorithms, kernel methods and more.
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Linear regression via the Lasso (Tibshirani, 1995)

• Given observations {yi, xi1, . . . , xip}Ni=1

min
β

N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)2 subject to
p∑

j=1

|βj | ≤ t

• Similar to ridge regression, which has constraint
∑

j β2
j ≤ t

• Lasso does variable selection and shrinkage, while ridge only
shrinks.
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Brief History of �1 Regularization

• Wavelet Soft Thresholding (Donoho and Johnstone 1994) in
orthonormal setting.

• Tibshirani introduces Lasso for regression in 1995.

• Same idea used in Basis Pursuit (Chen, Donoho and Saunders
1996).

• Extended to many linear-model settings e.g. Survival models
(Tibshirani, 1997), logistic regression, and so on.

• Gives rise to a new field Compressed Sensing (Donoho 2004,
Candes and Tao 2005)—near exact recovery of sparse signals in
very high dimensions. In many cases �1 a good surrogate for �0.
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Lasso: β̂(λ) = argminβ

∑N
i=1(yi − β0 − xT

i β)2 + λ||β||1
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History of Path Algorithms

Efficient path algorithms for β̂(λ) allow for easy and exact
cross-validation and model selection.

• In 2001 the LARS algorithm (Efron et al) provides a way to
compute the entire lasso coefficient path efficiently at the cost
of a full least-squares fit.

• 2001 – present: path algorithms pop up for a wide variety of
related problems: Grouped lasso (Yuan & Lin 2006),
support-vector machine (Hastie, Rosset, Tibshirani & Zhu
2004), elastic net (Zou & Hastie 2004), quantile regression (Li
& Zhu, 2007), logistic regression and glms (Park & Hastie,
2007), Dantzig selector (James & Radchenko 2008), ...

• Many of these do not enjoy the piecewise-linearity of LARS,
and seize up on very large problems.
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Coordinate Descent

• Solve the lasso problem by coordinate descent: optimize each
parameter separately, holding all the others fixed. Updates are
trivial. Cycle around till coefficients stabilize.

• Do this on a grid of λ values, from λmax down to λmin

(uniform on log scale), using warms starts.

• Can do this with a variety of loss functions and additive
penalties.

Coordinate descent achieves dramatic speedups over all
competitors, by factors of 10, 100 and more.
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Speed Trials

Competitors:

lars As implemented in R package, for squared-error loss.

glmnet Fortran based R package using coordinate descent — topic
of this talk. Does squared error and logistic (2- and K-class).

l1logreg Lasso-logistic regression package by Koh, Kim and Boyd,
using state-of-art interior point methods for convex
optimization.

BBR/BMR Bayesian binomial/multinomial regression package by
Genkin, Lewis and Madigan. Also uses coordinate descent to
compute posterior mode with Laplace prior—the lasso fit.

Based on simulations (next 3 slides) and real data (4th slide).
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Linear Regression — Dense Features

Average Correlation between Features
0 0.1 0.2 0.5 0.9 0.95

N = 5000, p = 100

glmnet 0.05 0.05 0.05 0.05 0.05 0.05

lars 0.29 0.29 0.29 0.30 0.29 0.29

N = 100, p = 50000

glmnet 2.66 2.46 2.84 3.53 3.39 2.43

lars 58.68 64.00 64.79 58.20 66.39 79.79

Timings (secs) for glmnet and lars algorithms for linear regression with

lasso penalty. Total time for 100 λ values, averaged over 3 runs.
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Logistic Regression — Dense Features

Average Correlation between Features
0 0.1 0.2 0.5 0.9 0.95

N = 5000, p = 100

glmnet 7.89 8.48 9.01 13.39 26.68 26.36

l1lognet 239.88 232.00 229.62 229.49 223.19 223.09

N = 100, p = 5000

glmnet 5.24 4.43 5.12 7.05 7.87 6.05

l1lognet 165.02 161.90 163.25 166.50 151.91 135.28

Timings (seconds) for logistic models with lasso penalty. Total time for

tenfold cross-validation over a grid of 100 λ values.
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Logistic Regression — Sparse Features

0 0.1 0.2 0.5 0.9 0.95

N = 10, 000, p = 100

glmnet 3.21 3.02 2.95 3.25 4.58 5.08

BBR 11.80 11.64 11.58 13.30 12.46 11.83

l1lognet 45.87 46.63 44.33 43.99 45.60 43.16

N = 100, p = 10, 000

glmnet 10.18 10.35 9.93 10.04 9.02 8.91

BBR 45.72 47.50 47.46 48.49 56.29 60.21

l1lognet 130.27 124.88 124.18 129.84 137.21 159.54

Timings (seconds) for logistic model with lasso penalty and sparse

features (95% zeros in X). Total time for ten-fold cross-validation over a

grid of 100 λ values.
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Logistic Regression — Real Datasets

Name Type N p glmnet l1logreg BBR
BMR

Dense

Cancer 14 class 144 16,063 2.5 mins NA 2.1 hrs

Leukemia 2 class 72 3571 2.50 55.0 450

Sparse

Internet ad 2 class 2359 1430 5.0 20.9 34.7

Newsgroup 2 class 11,314 777,811 2 mins 3.5 hrs

Timings in seconds (unless stated otherwise). For Cancer, Leukemia and

Internet-Ad, times are for ten-fold cross-validation over 100 λ values; for

Newsgroup we performed a single run with 100 values of λ, with

λmin = 0.05λmax.
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A brief history of coordinate descent for the lasso

1997 Tibshirani’s student Wenjiang Fu at U. Toronto develops the
“shooting algorithm” for the lasso. Tibshirani doesn’t fully
appreciate it.

.
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A brief history of coordinate descent for the lasso

1997 Tibshirani’s student Wenjiang Fu at U. Toronto develops the
“shooting algorithm” for the lasso. Tibshirani doesn’t fully
appreciate it.

2002 Ingrid Daubechies gives a talk at Stanford, describes a
one-at-a-time algorithm for the lasso. Hastie implements it,
makes an error, and Hastie +Tibshirani conclude that the
method doesn’t work.

.
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A brief history of coordinate descent for the lasso

1997 Tibshirani’s student Wenjiang Fu at U. Toronto develops the
“shooting algorithm” for the lasso. Tibshirani doesn’t fully
appreciate it.

2002 Ingrid Daubechies gives a talk at Stanford, describes a
one-at-a-time algorithm for the lasso. Hastie implements it,
makes an error, and Hastie +Tibshirani conclude that the
method doesn’t work.

2006 Friedman is external examiner at PhD oral of Anita van der
Kooij (Leiden) who uses coordinate descent for elastic net.
Friedman, Hastie + Tibshirani revisit this problem. Others
have too — Shevade and Keerthi (2003), Krishnapuram and
Hartemink (2005), Genkin, Lewis and Madigan (2007), Wu and
Lange (2008), Meier, van de Geer and Buehlmann (2008).
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Coordinate descent for the lasso

minβ
1

2N

∑N
i=1(yi −

∑p
j=1 xijβj)2 + λ

∑p
j=1 |βj |

Suppose the p predictors and response are standardized to have
mean zero and variance 1. Initialize all the βj = 0.

Cycle over j = 1, 2, . . . , p, 1, 2, . . . till convergence:

• Compute the partial residuals rij = yi −
∑

k �=j xikβk.

• Compute the simple least squares coefficient of these residuals
on jth predictor: β∗

j = 1
N

∑N
i=1 xijrij

• Update βj by soft-thresholding:

βj ← S(β∗
j , λ)

= sign(β∗
j )(|β∗

j | − λ)+

(0,0)

λ
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Why is coordinate descent so fast?

There are a number of tricks and strategies that we use exploit the
structure of the problem.

Naive Updates: β∗
j = 1

N

∑N
i=1 xijrij = 1

N

∑N
i=1 xijri + βj , where

ri is current model residual; O(N). Many coefficients are zero,
and stay zero. If a coefficient changes, residuals are updated in
O(N) computations.

Covariance Updates:
∑N

i=1 xijri = 〈xj , y〉 −
∑

k:|βk|>0〈xj , xk〉βk

Cross-covariance terms are computed once for active variables
and stored (helps a lot when N � p).

Sparse Updates: If data is sparse (many zeros), inner products
can be computed efficiently.
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Active Set Convergence: After a cycle through p variables, we
can restrict further iterations to the active set till convergence
+ one more cycle through p to check if active set has changed.
Helps when p� N .

Warm Starts: We fits a sequence of models from λmax down to
λmin = ελmax (on log scale). λmax is smallest value of λ for
which all coefficients are zero. Solutions don’t change much
from one λ to the next. Convergence is often faster for entire
sequence than for single solution at small value of λ.

FFT:

.
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Active Set Convergence: After a cycle through p variables, we
can restrict further iterations to the active set till convergence
+ one more cycle through p to check if active set has changed.
Helps when p� N .

Warm Starts: We fits a sequence of models from λmax down to
λmin = ελmax (on log scale). λmax is smallest value of λ for
which all coefficients are zero. Solutions don’t change much
from one λ to the next. Convergence is often faster for entire
sequence than for single solution at small value of λ.

FFT: Friedman + Fortran + Tricks — no sloppy flops!

.
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Binary Logistic Models

Newton Updates: For binary logistic regression we have an outer
Newton loop at each λ. This amounts to fitting a lasso with
weighted squared error-loss. Uses weighted soft thresholding.

Multinomial: We use a symmetric formulation for multi- class
logistic:

Pr(G = �|x) =
eβ0�+xT β�

∑K
k=1 eβ0k+xT βk

.

This creates an additional loop, as we cycle through classes,
and compute the quadratic approximation to the multinomial
log-likelihood, holding all but one class’s parameters fixed.

Details Many important but tedious details with logistic models.
e.g. if p� N , cannot let λ run down to zero.
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Elastic-net Penalty

Proposed in Zou and Hastie (2005) for p� N situations, where
predictors are correlated in groups.

Pα(β) =
p∑

j=1

[
1
2 (1− α)β2

j + α|βj |
]
.

α creates a compromise between the lasso and ridge.

Coordinate update is now

βj ←
S(β∗

j , λα)
1 + λ(1− α)

where β∗
j = 1

N

∑N
i=1 xijrij as before.
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Lasso Elastic Net (0.4) Ridge

Leukemia Data, Logistic, N=72, p=3571, first 10 steps shown
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Multiclass classification

Microarray classification: 16,063 genes, 144 training samples 54 test
samples, 14 cancer classes. Multinomial regression model.

Methods CV errors Test errors # of

out of 144 out of 54 genes used

1. Nearest shrunken centroids 35 (5) 17 6520

2. L2-penalized discriminant analysis 25 (4.1) 12 16063

3. Support vector classifier 26 (4.2) 14 16063

4. Lasso regression (one vs all) 30.7 (1.8) 12.5 1429

5. K-nearest neighbors 41 (4.6) 26 16063

6. L2-penalized multinomial 26 (4.2) 15 16063

7. Lasso-penalized multinomial 17 (2.8) 13 269

8. Elastic-net penalized multinomial 22 (3.7) 11.8 384

6–8 fit using glmnet
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Summary

Many problems have the form

min
{βj}p

1

⎡
⎣R(y, β) + λ

p∑
j=1

Pj(βj)

⎤
⎦ .

• If R and Pj are convex, and R is differentiable, then coordinate
descent converges to the solution (Tseng, 1988).

• Often each coordinate step is trivial. E.g. for lasso, it amounts
to soft-thresholding, with many steps leaving β̂j = 0.

• Decreasing λ slowly means not much cycling is needed.

• Coordinate moves can exploit sparsity.
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Other Applications

Undirected Graphical Models — learning dependence
structure via the lasso. Model the inverse covariance Θ in the
Gaussian family with L1 penalties applied to elements.

max
Θ

log detΘ− Tr(SΘ)− λ||Θ||1

Modified block-wise lasso algorithm, which we solve by
coordinate descent (FHT 2007). Algorithm is very fast, and
solve moderately sparse graphs with 1000 nodes in under a
minute.

Example: flow cytometry - p = 11 proteins measured in N = 7466
cells (Sachs et al 2003) (next page)
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Grouped lasso (Yuan and Lin, 2007, Meier, Van de Geer,
Buehlmann, 2008) — each term Pj(βj) applies to sets of
parameters:

J∑
j=1

||βj ||2.

Example: each block represents the levels for a categorical
predictor.
Leads to a block-updating form of coordinate descent.
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CGH modeling and the fused lasso. Here the penalty has the
form

p∑
j=1

|βj |+ α

p−1∑
j=1

|βj+1 − βj |.

This is not additive, so a modified coordinate descent
algorithm is required (FHT + Hoeffling 2007).
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Matrix Completion
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Example: Netflix problem.
We partially observe a ma-
trix of movie ratings (rows)
by a number of raters
(columns). The goal is to
predict the future ratings of
these same individuals for
movies they have not yet
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We solve this problem by fitting an �1 regularized SVD path to the
observed data matrix (Mazumder, Hastie and Tibshirani, 2009).
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�1 regularized SVD

min
X̂
||PΩ(X)− PΩ(X̂)||2F + λ||X̂||∗

• PΩ is projection onto observed values (sets unobserved to 0).

• ||X̂||∗ is nuclear norm — sum of singular values.

• This is a convex optimization problem (Candes 2008), with
solution given by a soft thresholded SVD — singular values are
shrunk toward zero, many set to zero.

• Our algorithm iteratively soft-thresholds the SVD of

PΩ(X) + P⊥
Ω (X̂) =

{
PΩ(X)− PΩ(X̂)

}
+ X̂

= Sparse + Low-Rank

• Using Lanczos techniques and warm starts, we can efficiently
compute solution paths for very large matrices (50K ×50K)
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Summary

• �1 regularization (and variants) has become a powerful tool
with the advent of wide data.

• In compressed sensing, often exact sparse signal recovery is
possible with �1 methods.

• Coordinate descent is fastest known algorithm for solving these
problems—along a path of values for the tuning parameter.


