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Introduction

• Classical count data models (Poisson, NegBin) often not flexible enough for applica-
tions in economics and the social sciences.

• Typical problems include overdispersion and excess zeros.

Also relevant in e.g. fisheries research, medical sciences (DMF teeth index) etc.

• Zero-inflation and hurdle models (Mullahy, J. Econometrics 1986, Lambert, Techno-
metrics 1992) address excess zeros, implicitly also overdispersion.

Recent paper on implementation in R:

Zeileis, Kleiber and Jackman (2008): Regression models for count data in R. J. Sta-
tistical Software, 27(8). URL http://www.jstatsoft.org/v27/i8/

• Generalizations of NegBin have more flexible variance function or additional source of
heterogeneity via regressors in shape parameter.
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Regression models for count data

Classifications:

• Classical count data models:

– Poisson regression
– Negative binomial regression (including geometric regression)
– Quasi-Poisson regression

• Generalized count data models:

– Zero-inflation models
– Hurdle models
– NegBin-P model
– heterogeneous NegBin model (NB-H)

• Single-index models: Poisson, quasi-Poisson, geometric, negative binomial, NB-P

• Multiple-index models: zero-inflation models, hurdle models, NB-H
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Regression models for count data

Count data models in R: (incomplete list!)

• stats: Poisson and quasi-Poisson models via glm()

• MASS: negative binomial and geometric regression via glm.nb()

• pscl: zero-inflation and hurdle models via zeroinfl() and hurdle()

• AER: testing for equidispersion via dispersiontest()

• flexmix: finite mixtures of Poissons via flexmix()

• gamlss: Poisson-inverse Gaussian (PIG) regression via gamlss()
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Regression models for count data

Generalized linear models are defined by 3 elements:

• Linear predictor ηi = x>i β through which µi = E(yi|xi) depends on vectors xi of
observations and β of parameters.

• Distribution of dependent variable yi|xi is linear exponential family

f(y; θ, φ) = exp
{
yθ − b(θ)

φ
+ c(y;φ)

}
.

• Expected response µi and linear predictor ηi are related by monotonic transformation

g(µi) = ηi,

called link function.
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Regression models for count data

• Poisson model:

f(y;µ) =
exp(−µ) · µy

y!
, y = 0, 1, 2, . . .

• Negative binomial model:

f(y;µ, θ) =
Γ(y + θ)
Γ(θ) · y!

· µy · θθ

(µ+ θ)y+θ
, y = 0, 1, 2, . . .

• Canonical link is g(µ) = log(µ) for both.

• NegBin is GLM only for fixed θ. Special case: geometric distribution for θ = 1.
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Regression models for count data

Example: (US National Medical Expenditure Survey [NMES] data for 1987/88)

Available as NMES1988 in package AER (Kleiber and Zeileis 2008).
Originally taken from Deb and Trivedi (J. Applied Econometrics 1997).

n = 4406 individuals, aged 66 and over, covered by Medicare

Objective: model demand for medical care – here defined as number of physician office
visits – in terms of covariates.

Variables:
visits – number of physician office visits (response)
hospital – number of hospital stays
health – self-perceived health status
chronic – number of chronic conditions
gender – gender
school – number of years of education
insurance – private insurance indicator
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Regression models for count data
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Zero-inflation models

A mixture of point mass at zero I{0}(y) and count distribution fcount(y;x, β):

fzeroinfl(y;x, z, β, γ) = π · I{0}(y) + (1− π) · fcount(y;x, β)

• Probability of observing zero count is inflated with probability π.

• More recent applications have π = fzero(0; z, γ).
Unobserved probability π is modelled by binomial GLM π = g−1(z>γ).

• Regression equation for the mean is (using canonical [= log] link)

µi = πi · 0 + (1− πi) · exp(x>i β),

• Vectors of regressors zi and xi need not be distinct.

• Inference for (β, γ, θ) by ML. θ is treated as nuisance parameter.
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Zero-inflation models

In R:

• Package pscl has function zeroinfl()

• Typical call looks like

R> dt_zinb <- zeroinfl(visits ~ . |

+ hospital + chronic + insurance + school + gender,

+ data = dt, dist = "negbin")

• Count part specified by dist argument, using canonical [= log] link.

• Binary part defaults to link = "logit", other links also available.

• Optimization via optim(). Otherweise GLM building blocks are reused.

• Methods include coef(), fitted(), logLik(), predict(), summary(), vcov().

C Kleiber 11 U Basel



Zero-inflation models

Call:

zeroinfl(formula = visits ~ . | hospital + chronic + insurance +

school + gender, data = dt, dist = "negbin")

Count model coefficients (negbin with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.19372 0.05666 21.07 < 2e-16

hospital 0.20148 0.02036 9.90 < 2e-16

healthpoor 0.28513 0.04509 6.32 2.6e-10

healthexcellent -0.31934 0.06040 -5.29 1.2e-07

chronic 0.12900 0.01193 10.81 < 2e-16

gendermale -0.08028 0.03102 -2.59 0.0097

school 0.02142 0.00436 4.92 8.8e-07

insuranceyes 0.12586 0.04159 3.03 0.0025

Log(theta) 0.39414 0.03503 11.25 < 2e-16
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Zero-inflation models

Zero-inflation model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.0468 0.2686 -0.17 0.8615

hospital -0.8005 0.4208 -1.90 0.0571

chronic -1.2479 0.1783 -7.00 2.6e-12

insuranceyes -1.1756 0.2201 -5.34 9.3e-08

school -0.0838 0.0263 -3.19 0.0014

gendermale 0.6477 0.2001 3.24 0.0012

Theta = 1.483

Number of iterations in BFGS optimization: 28

Log-likelihood: -1.21e+04 on 15 Df
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Hurdle models

Hurdle model combines

• Count part fcount(y;x, β) (count left-truncated at y = 1)

• Zero hurdle part fzero(y; z, γ) (count right-censored at y = 1)

fhurdle(y;x, z, β, γ) =

{
fzero(0; z, γ) if y = 0,
(1− fzero(0; z, γ)) · fcount(y;x,β)

1−fcount(0;x,β) if y > 0

Inference for parameters (β, γ, θ) by ML. θ is treated as nuisance parameter.

Logit and censored geometric models as hurdle part both lead to same likelihood, and
thus to identical estimates.

If same regressors xi = zi are used one can test β = γ – is hurdle needed or not?
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Hurdle models

In R:

• Package pscl has function hurdle()

• Typical call is

R> dt_hurdle <- hurdle(visits ~ . |

+ hospital + chronic + insurance + school + gender,

+ data = dt, dist = "negbin")

• Count part specified by dist argument, using canonical [= log] link.

• Binary part defaults to zero.dist = "binomial" with link = "logit", other
links and distributions also available.

• Optimization via optim(). Otherweise GLM building blocks are reused.

• Methods include coef(), fitted(), logLik(), predict(), summary(), vcov().
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Hurdle models

Call:

hurdle(formula = visits ~ . | hospital + chronic + insurance +

school + gender, data = dt, dist = "negbin")

Count model coefficients (truncated negbin with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.19770 0.05897 20.31 < 2e-16

hospital 0.21190 0.02140 9.90 < 2e-16

healthpoor 0.31596 0.04806 6.57 4.9e-11

healthexcellent -0.33186 0.06609 -5.02 5.1e-07

chronic 0.12642 0.01245 10.15 < 2e-16

gendermale -0.06832 0.03242 -2.11 0.035

school 0.02069 0.00453 4.56 5.0e-06

insuranceyes 0.10017 0.04262 2.35 0.019

Log(theta) 0.33325 0.04275 7.79 6.5e-15
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Hurdle models

Zero hurdle model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.0159 0.1378 0.12 0.90788

hospital 0.3184 0.0911 3.50 0.00047

chronic 0.5478 0.0436 12.57 < 2e-16

insuranceyes 0.7457 0.1003 7.43 1.1e-13

school 0.0571 0.0119 4.78 1.7e-06

gendermale -0.4191 0.0875 -4.79 1.7e-06

Theta: count = 1.396

Number of iterations in BFGS optimization: 16

Log-likelihood: -1.21e+04 on 15 Df
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Generalized negative binomial models

NegBin-P model: (Winkelmann and Zimmermann 1991, Greene 2008)

Negative binomial in standard parametrization has variance function

Var(yi|xi) = µi

(
1 +

1
θ
µi

)

Special case of

Var(yi|xi) = µi

(
1 +

1
θ
µP−1
i

)
Common versions are P = 1, 2, called NB1 and NB2.

Can also estimate P , this gives NB-P model.
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Generalized negative binomial models

NegBin-H model: (Greene 2007)

Further generalization to multiple index model via

Var(yi|xi) = µi

(
1 +

1
θi
µP−1
i

)
with θi = exp (z>i γ).

R implementation of NB-P and NB-H by D. Cueni (M.S. thesis, U Basel 2008).

Optimization via nlminb().

Programs allow for fixing P , thus enabling NB1 regression.
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Generalized negative binomial models

Results for 4 models:

R> logLik(dt_nb2)

’log Lik.’ -12171 (df=9)

R> logLik(dt_hurdle)

’log Lik.’ -12090 (df=15)

R> logLik(dt_nbp)

’log Lik.’ -12135 (df=10)

R> logLik(dt_nbh)

’log Lik.’ -12098 (df=15)
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Generalized negative binomial models
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Further extensions

Welcome additions:

• more on multivariate count data models (bivpois has bivariate Poisson models)

• more on finite mixtures (flexmix has finite mixtures of Poissons, but not of NegBins).

• count models for panels (to some extent available in lme4, glmmML, . . . )

• further Poisson mixtures

• count models with endogeneity, selectivity, . . .
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