

Generalized count data regression in R

Christian Kleiber and U Basel

Achim Zeileis WU Wien

Outline

- Introduction
- Regression models for count data
- Zero-inflation models
- Hurdle models
- Generalized negative binomial models
- Further extensions

Introduction

- Classical count data models (Poisson, NegBin) often not flexible enough for applications in economics and the social sciences.
- Typical problems include overdispersion and excess zeros.

Also relevant in e.g. fisheries research, medical sciences (DMF teeth index) etc.

• Zero-inflation and hurdle models (Mullahy, *J. Econometrics* 1986, Lambert, *Techno-metrics* 1992) address excess zeros, implicitly also overdispersion.

Recent paper on implementation in R:

Zeileis, Kleiber and Jackman (2008): Regression models for count data in R. J. Statistical Software, 27(8). URL http://www.jstatsoft.org/v27/i8/

• Generalizations of NegBin have more flexible variance function or additional source of heterogeneity via regressors in shape parameter.

Regression models for count data

Classifications:

- Classical count data models:
 - Poisson regression
 - Negative binomial regression (including geometric regression)
 - Quasi-Poisson regression

• Generalized count data models:

- Zero-inflation models
- Hurdle models
- NegBin-P model
- heterogeneous NegBin model (NB-H)
- Single-index models: Poisson, quasi-Poisson, geometric, negative binomial, NB-P
- Multiple-index models: zero-inflation models, hurdle models, NB-H

Count data models in R: (incomplete list!)

- **stats**: Poisson and quasi-Poisson models via glm()
- **MASS**: negative binomial and geometric regression via glm.nb()
- **pscl**: zero-inflation and hurdle models via zeroinfl() and hurdle()
- **AER**: testing for equidispersion via dispersiontest()
- **flexmix**: finite mixtures of Poissons via flexmix()
- **gamlss**: Poisson-inverse Gaussian (PIG) regression via gamlss()

Regression models for count data

Generalized linear models are defined by 3 elements:

- Linear predictor $\eta_i = x_i^{\top}\beta$ through which $\mu_i = \mathsf{E}(y_i|x_i)$ depends on vectors x_i of observations and β of parameters.
- Distribution of dependent variable $y_i | x_i$ is linear exponential family

$$f(y; \theta, \phi) = \exp\left\{\frac{y\theta - b(\theta)}{\phi} + c(y; \phi)\right\}.$$

• Expected response μ_i and linear predictor η_i are related by monotonic transformation

$$g(\mu_i) = \eta_i,$$

called link function.

• Poisson model:

$$f(y;\mu) = \frac{\exp(-\mu) \cdot \mu^y}{y!}, \qquad y = 0, 1, 2, \dots$$

• Negative binomial model:

$$f(y;\mu,\theta) = \frac{\Gamma(y+\theta)}{\Gamma(\theta)\cdot y!} \cdot \frac{\mu^y \cdot \theta^\theta}{(\mu+\theta)^{y+\theta}}, \qquad y=0,1,2,\dots$$

- Canonical link is $g(\mu) = \log(\mu)$ for both.
- NegBin is GLM only for fixed θ . Special case: geometric distribution for $\theta = 1$.

Example: (US National Medical Expenditure Survey [NMES] data for 1987/88)

Available as NMES1988 in package **AER** (Kleiber and Zeileis 2008). Originally taken from Deb and Trivedi (*J. Applied Econometrics* 1997).

n = 4406 individuals, aged 66 and over, covered by Medicare

Objective: model demand for medical care – here defined as number of physician office visits – in terms of covariates.

Variables:

visits - number of physician office visits (response) hospital - number of hospital stays health - self-perceived health status chronic - number of chronic conditions gender - gender school - number of years of education insurance - private insurance indicator

Regression models for count data

Number of physician office visits

A mixture of point mass at zero $I_{\{0\}}(y)$ and count distribution $f_{\text{count}}(y; x, \beta)$:

$$f_{\text{zeroinfl}}(y; x, z, \beta, \gamma) = \pi \cdot I_{\{0\}}(y) + (1 - \pi) \cdot f_{\text{count}}(y; x, \beta)$$

- Probability of observing zero count is inflated with probability π .
- More recent applications have $\pi = f_{zero}(0; z, \gamma)$. Unobserved probability π is modelled by binomial GLM $\pi = g^{-1}(z^{\top}\gamma)$.
- Regression equation for the mean is (using canonical [= log] link)

$$\mu_i = \pi_i \cdot 0 + (1 - \pi_i) \cdot \exp(x_i^\top \beta),$$

- Vectors of regressors z_i and x_i need not be distinct.
- Inference for (β, γ, θ) by ML. θ is treated as nuisance parameter.

Zero-inflation models

In R:

- Package **pscl** has function zeroinfl()
- Typical call looks like

```
R> dt_zinb <- zeroinfl(visits ~ . |
+ hospital + chronic + insurance + school + gender,
+ data = dt, dist = "negbin")</pre>
```

- Count part specified by dist argument, using canonical [= log] link.
- Binary part defaults to link = "logit", other links also available.
- Optimization via optim(). Otherweise GLM building blocks are reused.
- Methods include coef(), fitted(), logLik(), predict(), summary(), vcov().

Count model coer	fficients	(negbin with	log li	lnk):
	Estimate	Std. Error z	value	Pr(z)
(Intercept)	1.19372	0.05666	21.07	< 2e-16
hospital	0.20148	0.02036	9.90	< 2e-16
healthpoor	0.28513	0.04509	6.32	2.6e-10
healthexcellent	-0.31934	0.06040	-5.29	1.2e-07
chronic	0.12900	0.01193	10.81	< 2e-16
gendermale	-0.08028	0.03102	-2.59	0.0097
school	0.02142	0.00436	4.92	8.8e-07
insuranceyes	0.12586	0.04159	3.03	0.0025
Log(theta)	0.39414	0.03503	11.25	< 2e-16

Zero-inflation models

Zero-inflation model coefficients (binomial with logit link):					
	Estimate	Std. Error	z value	Pr(z)	
(Intercept)	-0.0468	0.2686	-0.17	0.8615	
hospital	-0.8005	0.4208	-1.90	0.0571	
chronic	-1.2479	0.1783	-7.00	2.6e-12	
insuranceyes	-1.1756	0.2201	-5.34	9.3e-08	
school	-0.0838	0.0263	-3.19	0.0014	
gendermale	0.6477	0.2001	3.24	0.0012	

Theta = 1.483 Number of iterations in BFGS optimization: 28 Log-likelihood: -1.21e+04 on 15 Df Hurdle model combines

- Count part $f_{\text{count}}(y; x, \beta)$ (count left-truncated at y = 1)
- Zero hurdle part $f_{
 m zero}(y;z,\gamma)$ (count right-censored at y=1)

$$f_{\text{hurdle}}(y; x, z, \beta, \gamma) = \begin{cases} f_{\text{zero}}(0; z, \gamma) & \text{if } y = 0, \\ (1 - f_{\text{zero}}(0; z, \gamma)) \cdot \frac{f_{\text{count}}(y; x, \beta)}{1 - f_{\text{count}}(0; x, \beta)} & \text{if } y > 0 \end{cases}$$

Inference for parameters (β , γ , θ) by ML. θ is treated as nuisance parameter.

Logit and censored geometric models as hurdle part both lead to same likelihood, and thus to identical estimates.

If same regressors $x_i = z_i$ are used one can test $\beta = \gamma$ – is hurdle needed or not?

Hurdle models

In R:

- Package **pscl** has function hurdle()
- Typical call is

```
R> dt_hurdle <- hurdle(visits ~ . |
+ hospital + chronic + insurance + school + gender,
+ data = dt, dist = "negbin")</pre>
```

- Count part specified by dist argument, using canonical $[= \log]$ link.
- Binary part defaults to zero.dist = "binomial" with link = "logit", other links and distributions also available.
- Optimization via optim(). Otherweise GLM building blocks are reused.
- Methods include coef(), fitted(), logLik(), predict(), summary(), vcov().

Count model coe	fficients	(truncated	negbin v	with log	link):
	Estimate	Std. Error	z value	Pr(z)	
(Intercept)	1.19770	0.05897	20.31	< 2e-16	
hospital	0.21190	0.02140	9.90	< 2e-16	
healthpoor	0.31596	0.04806	6.57	4.9e-11	
healthexcellent	-0.33186	0.06609	-5.02	5.1e-07	
chronic	0.12642	0.01245	10.15	< 2e-16	
gendermale	-0.06832	0.03242	-2.11	0.035	
school	0.02069	0.00453	4.56	5.0e-06	
insuranceyes	0.10017	0.04262	2.35	0.019	
Log(theta)	0.33325	0.04275	7.79	6.5e-15	

Hurdle models

Zero hurdle m	nodel coef	fficients (bi	nomial	with logit link):
	Estimate	Std. Error z	value	Pr(> z)
(Intercept)	0.0159	0.1378	0.12	0.90788
hospital	0.3184	0.0911	3.50	0.00047
chronic	0.5478	0.0436	12.57	< 2e-16
insuranceyes	0.7457	0.1003	7.43	1.1e-13
school	0.0571	0.0119	4.78	1.7e-06
gendermale	-0.4191	0.0875	-4.79	1.7e-06

```
Theta: count = 1.396
Number of iterations in BFGS optimization: 16
Log-likelihood: -1.21e+04 on 15 Df
```

NegBin-*P* **model:** (Winkelmann and Zimmermann 1991, Greene 2008) Negative binomial in standard parametrization has variance function

$$\mathsf{Var}(y_i|x_i) = \mu_i \left(1 + \frac{1}{\theta}\mu_i\right)$$

Special case of

$$\mathsf{Var}(y_i|x_i) = \mu_i \left(1 + \frac{1}{\theta}\mu_i^{P-1}\right)$$

Common versions are P = 1, 2, called **NB1** and **NB2**.

Can also estimate P, this gives **NB**-P model.

NegBin-H model: (Greene 2007)

Further generalization to multiple index model via

$$\mathsf{Var}(y_i|x_i) = \mu_i \left(1 + \frac{1}{\theta_i} \mu_i^{P-1}\right)$$

with $\theta_i = \exp{(z_i^\top \gamma)}$.

R implementation of NB-P and NB-H by D. Cueni (M.S. thesis, U Basel 2008). Optimization via nlminb().

Programs allow for fixing P, thus enabling NB1 regression.

Results for 4 models:

- R> logLik(dt_nb2)
- 'log Lik.' -12171 (df=9)
- R> logLik(dt_hurdle)
- 'log Lik.' -12090 (df=15)
- R> logLik(dt_nbp)
- 'log Lik.' -12135 (df=10)
- R> logLik(dt_nbh)

```
'log Lik.' -12098 (df=15)
```


Actual vs Estimated Frequencies

Values

Welcome additions:

- more on multivariate count data models (**bivpois** has bivariate Poisson models)
- more on finite mixtures (**flexmix** has finite mixtures of Poissons, but not of NegBins).
- count models for panels (to some extent available in Ime4, gImmML, ...)
- further Poisson mixtures
- count models with endogeneity, selectivity, ...