UseR! 2007, lowa State University, Ames, August 8-1(

The T package:

Handling Large Data Sets in R with
Memory Mapped Pages of Binary Flat Files

D. Adler, O. Nenadi¢, W. Zucchini, C. Glaser
Institute for Statistics and Econometrics,
Georg-August-Universitat Gottingen, Germany
<dadler,onenadi,wzucchi,cglaese>@uni-goettingen.de

Overview

o [ntroduction

e The FF package

o Selected examples

o Architecture

e Summary and conclusion

1. Introduction

e Two issues when dealing with large data sets in R:

o Memory limitations

On most computer systems it is not possible to use more than
2 GB of memory, i.e. it is not possible to use the data (in the
“usual” way)

o Addressing limitations

The range of indexes that can be used is limited, i.e.
computers don‘t understand arbitrary large numbers

1. Introduction

e Memory limitations

e On 32-bit OSes the maximum amount of memory (virtual memory space) is
limited to 2-4 GB; one cannot store larger data into memory

o In general, it is impracticable to handle data that is larger than the available
RAM (resorting to virtual memory drastically slows down things)

o Another issue is given by the question whether all data need to be present in
memory at the same time (e.g. when only a random sample of a large data set
is considered)

1. Introduction

° Memory limitations, cont.

o A solution to the memory limitation problem is given by considering only parts
of the data at a time, i.e. instead of loading the entire data set into memory only
chunks thereof are loaded upon request

®

R Memory Data on persistant storage

o The TF package was designed to provide convenient access to large data
from persistant storage

o Only one small section of the data (typically 4 - 64KB) is mirrored into main
memory at a time

1. Introduction

o Addressing limitations

o Specific issue for 32-bit machines:

The maximum addressable range goes up to 23'-1 ; this is the biggest
representable (signed) integer

_ > as.integer(2731-1)
further entries [1] 2147483647

> as.integer(2731)
not accessable (1] NA

231_1 entries Warning message:
NAs introduced by coercion

e In other words, the addressing issue limits the size of the data that can be
analyzed to 16 GB (for double)

* The memory limitation usually kicks in before the addressing limitation

> X <- rep(0, 27"31-1)
Error: cannot allocate vector of length 2147483647

1. Introduction

e Addressing limitations, cont.

o On 32-bit R systems things get complicated: R uses 32-bit integer arithmetics,
while the hard disk is addressed with 64 bits (on most filing systems). Also, C++
provides 64-bit integer arithmetics on 32-bit systems.

o A simple “trick” to extend the addressable range on 32-bit machines is to
introduce “multi-indices”

32-bit 32-bit
index index
64-bit index

o On the R side multiple 32-bit indices are used; these are converted into one 64-
bit index on the C++ side

2. The TT package

° An overview of the T package

o The FF package introduces a new R object type acting as a container.

It operates on large binary flat files (double numeric vector).
Changes to the R object are immediately written on the file.

o The FF package comprises the following two parts

- a “low-level” layer written in C++

- a “high-level” layer in R

e The package was designed for convenient access to large data sets:

- large data sets (i.e. ¥F objects) are accessed in the same way as
ordinary R objects

2. The TT package

° The R Programming Interface (“high-level” layer)

e The R layer comprises the following sections:

e Opening / Creating flat files
Controlled by the two core functions £ and ffm. When a length or
dim argument is specified, a new file is created, otherwise an

existing file is opened

e |/Q operations
These are controlled by the “[” operator (for reading) and the
“[<-" operator for writing

e Generic functions and methods for ¥f and £fm objects
Methods for dim and length are provided and the function sample
is converted to a generic function

o Auxillary functions include e.g. seqpack for optimization purposes

3. Selected Examples

o Selected examples of usage

o Creating a (one-dimensional) flat file:

> library("'ff'")
> fool <- ff(''fool", length = 10)
> fool
$ff._attributes
class file pagesize readonly
"' "fool" '65536" "FALSE"
$first.values
[L] OO0OO0OO0OO000O0O0O
> fool[1:10]
[L] O0OO0OO0OO00O0O0O0O

o Modifying data:

> data(''rivers')

> To0l[1:10] <- rivers[1l:10]

> fool[1:10]

[1] 735 320 325 392 524 450 1459 465 600

3. Selected Examples

» Selected examples of usage, cont.

o Creating a (multi-dimensional) flat file:

> m <- ffm(C'foom", dim = c(31, 3))
> data(''trees’)
> m[1l:31, 1:3] <- trees[1:31, 1:3]

e [n order to interact with the biglIm package the wrapper function
ffm.data. frame is provided:

> require(biglm)
> ffmdf <- ffm.data.frame(m, c('Girth", "Height', 'Volume™))

3. Selected Examples

» Selected examples of usage, cont.

e Using biglIm with ¥Fm objects:

> g <- log(Volume) ~ log(Girth) + log(Height)

> mO0 <- bigglm(fg, data = ffmdf, chunksize = 10,

+ sandwich = TRUE)

> summary(mO)
Large data regression model: biggIm(formula = formula, data =
datafun, ...)
Sample size = 31

Coef (95% Cl) SE p

(Intercept) -6.632 -8.087 -5.176 0.728 O
log(Girth) 1.983 1.871 2.094 0.056 O
log(Height) 1.117 0.733 1.501 0.192 O
Sandwich (model-robust) standard errors

3. Selected Examples

» Selected examples of usage, cont.

» Loading a 14 GB flat file (US Census data from 2000 for Texas), taking a
random sample of selected variables and plotting the sample:

> # loading the flat file:
txdata <- ffm(''G:/texas_p'")

drawing a sample of indices
set.seed(1337)

ind <- runique(10000, total = 750624)
agm <- txdata[ind, 394]

agf <- txdataf[ind, 395]

removing missing values (coded as "07)
iIn.cl <- agm '=0 & agf '=0

agml <- agm[in.cl]

agfl <- agf[in.cl]

require(rgl)
plot3d(agml, agfl, O, size
view3d(0, 0, fov = 1, zoom

>
>
>
>
>
>
>
>
>
>
>
>
>

4. Architecture

° The “low-level” layer

o Structure of the “low-level” C++ layer

(dynamic)

ff Array<T> @&

FileM apper

“—>

— [T [] HEEEEEN
flat file

FileSection

[

MultiArray<T>

(pres¢) virtual memory

Multil ndex

e The C++ layer consists of two parts:

space

- abstractions to platform-specific services and

- a collection of template container classes

4. Architecture

° The “low-level” layer

o Abstractions to platform-specific system services contain a FileMapping and a
FileSection class (both are platform specific)

(dynamic)

Array<T> 1| FileMapper JENEEEEE IEEEEEEN
: flat file

FileSection > LT
(pre-set) - yirtual memory
® space

MultiArray<T> (@ Multilndex

o FileMapping class: Implementation of memory mapped file facilities; exposes a
factory method to create FileSection objects

o FileSection class: Implementation of memory mapped file regions that exposes
the pointer to the corresponding file region that is mapped to main memory

4. Architecture

° The “low-level” layer

o The ftemplate container classes implement a caching strategy on top of memory
mapped pages of large files

(dynamic)

Array<T> |@®
4

FileMapper > JTT T T T T T T
flat file

FileSection SN EEEN
(pre-set) - yirtual memory

MultiArray<T>

space

.‘_

Multiindex

o Array<7>template class manages one FileSection object at a time

o Multiarray<7>template class implements a multi-dimensional array using a

multiple integer index

o Multilndex utility class translates between multiple integer indices an 64-bit

indices

5. Summary and conclusion

o We have presented the TF package for handling large data sets in R; it was
developed for the UseR! 2007 programming competition

e The package comprises two components, a low-level layer written in C++
and a high-level layer in R

o The package uses platform-specific features and has been ported to Windows,
Linux, Mac OS X and FreeBSD

o With this approach it is possible to work on multiple large data sets
simultaneously

* 64-bit systems also benefit from this approach

o The package is available from
http://wsopuppenkiste.wiso.uni-goettingen.de/ff

5. Summary and conclusion

o Future work

o Support for further data types - besides doubles - is in progress

e The architecture of the package is modular - various storage and caching
policies can be evaluated in the future

o Further I/O optimizations (performance gains)

e Re-implementing algorithms based on chunks (like the biglIm package)

o Feedback and suggestions for improvement are welcome

