
1

The ff package:
Handling Large Data Sets in R with

Memory Mapped Pages of Binary Flat Files

D. Adler, O. Nenadić, W. Zucchini, C. Gläser
Institute for Statistics and Econometrics,

Georg-August-Universität Göttingen, Germany
<dadler,onenadi,wzucchi,cglaese>@uni-goettingen.de

UseR! 2007, Iowa State University, Ames, August 8UseR! 2007, Iowa State University, Ames, August 8--10 200710 2007

2

Introduction

The ff package

Selected examples

Architecture

Summary and conclusion

0. Overview

3

1. Introduction

Two issues when dealing with large data sets in R:

Addressing limitations

The range of indexes that can be used is limited, i.e.
computers don‘t understand arbitrary large numbers

Memory limitations

On most computer systems it is not possible to use more than
2 GB of memory, i.e. it is not possible to use the data (in the
“usual” way)

4

1. Introduction

Memory limitations

On 32-bit OSes the maximum amount of memory (virtual memory space) is
limited to 2-4 GB; one cannot store larger data into memory

In general, it is impracticable to handle data that is larger than the available
RAM (resorting to virtual memory drastically slows down things)

Another issue is given by the question whether all data need to be present in
memory at the same time (e.g. when only a random sample of a large data set
is considered)

5

1. Introduction

Memory limitations, cont.

A solution to the memory limitation problem is given by considering only parts
of the data at a time, i.e. instead of loading the entire data set into memory only
chunks thereof are loaded upon request

The ff package was designed to provide convenient access to large data
from persistant storage

R Memory Data on persistant storage

Only one small section of the data (typically 4 - 64KB) is mirrored into main
memory at a time

6

1. Introduction

Addressing limitations

Specific issue for 32-bit machines:

The maximum addressable range goes up to 231-1 ; this is the biggest
representable (signed) integer

In other words, the addressing issue limits the size of the data that can be
analyzed to 16 GB (for double)

further entries
not accessable

231-1 entries

> as.integer(2^31-1)
[1] 2147483647
> as.integer(2^31)
[1] NA
Warning message:
NAs introduced by coercion

> x <- rep(0, 2^31-1)
Error: cannot allocate vector of length 2147483647

The memory limitation usually kicks in before the addressing limitation

7

1. Introduction

Addressing limitations, cont.

A simple “trick” to extend the addressable range on 32-bit machines is to
introduce “multi-indices”

On the R side multiple 32-bit indices are used; these are converted into one 64-
bit index on the C++ side

,

32-bit
index

32-bit
index

64-bit index

On 32-bit R systems things get complicated: R uses 32-bit integer arithmetics,
while the hard disk is addressed with 64 bits (on most filing systems). Also, C++
provides 64-bit integer arithmetics on 32-bit systems.

8

2. The ff package

An overview of the ff package

The ff package comprises the following two parts

- a “low-level” layer written in C++

- a “high-level” layer in R

The package was designed for convenient access to large data sets:

- large data sets (i.e. ff objects) are accessed in the same way as
ordinary R objects

The ff package introduces a new R object type acting as a container.
It operates on large binary flat files (double numeric vector).
Changes to the R object are immediately written on the file.

9

The R Programming Interface (“high-level” layer)

The R layer comprises the following sections:

2. The ff package

Opening / Creating flat files
Controlled by the two core functions ff and ffm. When a length or
dim argument is specified, a new file is created, otherwise an
existing file is opened

I/O operations
These are controlled by the “[” operator (for reading) and the
“[<-” operator for writing

Generic functions and methods for ff and ffm objects
Methods for dim and length are provided and the function sample
is converted to a generic function

Auxillary functions include e.g. seqpack for optimization purposes

10

3. Selected Examples

Selected examples of usage

Creating a (one-dimensional) flat file:

> library("ff")
> foo1 <- ff("foo1", length = 10)
> foo1
$ff.attributes

class file pagesize readonly
"ff" "foo1" "65536" "FALSE"

$first.values
[1] 0 0 0 0 0 0 0 0 0 0
> foo1[1:10]
[1] 0 0 0 0 0 0 0 0 0 0

Modifying data:

> data("rivers")
> foo1[1:10] <- rivers[1:10]
> foo1[1:10]
[1] 735 320 325 392 524 450 1459 135 465 600

11

3. Selected Examples

Selected examples of usage, cont.

Creating a (multi-dimensional) flat file:

> m <- ffm("foom", dim = c(31, 3))
> data("trees")
> m[1:31, 1:3] <- trees[1:31, 1:3]

In order to interact with the biglm package the wrapper function
ffm.data.frame is provided:

> require(biglm)
> ffmdf <- ffm.data.frame(m, c("Girth", "Height", "Volume"))

12

3. Selected Examples

Selected examples of usage, cont.

Using biglm with ffm objects:

> fg <- log(Volume) ~ log(Girth) + log(Height)
> m0 <- bigglm(fg, data = ffmdf, chunksize = 10,
+ sandwich = TRUE)
> summary(m0)

Large data regression model: bigglm(formula = formula, data =
datafun, ...)
Sample size = 31

Coef (95% CI) SE p
(Intercept) -6.632 -8.087 -5.176 0.728 0
log(Girth) 1.983 1.871 2.094 0.056 0
log(Height) 1.117 0.733 1.501 0.192 0
Sandwich (model-robust) standard errors

13

Selected examples of usage, cont.

Loading a 14 GB flat file (US Census data from 2000 for Texas), taking a
random sample of selected variables and plotting the sample:

> # loading the flat file:
> txdata <- ffm("G:/texas_p")

> # drawing a sample of indices
> set.seed(1337)
> ind <- runique(10000, total = 750624)
> agm <- txdata[ind, 394]
> agf <- txdata[ind, 395]

> # removing missing values (coded as '0')
> in.c1 <- agm != 0 & agf != 0
> agm1 <- agm[in.c1]
> agf1 <- agf[in.c1]

> require(rgl)
> plot3d(agm1, agf1, 0, size = 2, col = "red")
> view3d(0, 0, fov = 1, zoom = 0.7)

3. Selected Examples

14

The “low-level” layer

Structure of the “low-level” C++ layer

The C++ layer consists of two parts:

- abstractions to platform-specific services and
- a collection of template container classes

4. Architecture

Array< T>

MultiAr ray< T>

Fi leMapper

Fi leSection

Multi I ndex

virtual memory
space

flat file

(pre-set)

(dynamic)

15

The “low-level” layer

Abstractions to platform-specific system services contain a FileMapping and a
FileSection class (both are platform specific)

FileMapping class: Implementation of memory mapped file facilities; exposes a
factory method to create FileSection objects

Array<T>

MultiArray<T>

FileMapper

FileSection

MultiIndex

virtual memory
space

flat file

(pre-set)

(dynamic)

FileSection class: Implementation of memory mapped file regions that exposes
the pointer to the corresponding file region that is mapped to main memory

4. Architecture

16

The “low-level” layer

The template container classes implement a caching strategy on top of memory
mapped pages of large files

Array<T>

MultiArray<T>

FileMapper

FileSection

MultiIndex

virtual memory
space

flat file

(pre-set)

(dynamic)

Array<T> template class manages one FileSection object at a time

Multiarray<T> template class implements a multi-dimensional array using a
multiple integer index

MultiIndex utility class translates between multiple integer indices an 64-bit
indices

4. Architecture

17

5. Summary and conclusion

We have presented the ff package for handling large data sets in R; it was
developed for the UseR! 2007 programming competition

The package comprises two components, a low-level layer written in C++
and a high-level layer in R

The package uses platform-specific features and has been ported to Windows,
Linux, Mac OS X and FreeBSD

With this approach it is possible to work on multiple large data sets
simultaneously

64-bit systems also benefit from this approach

The package is available from

http://wsopuppenkiste.wiso.uni-goettingen.de/ff

18

5. Summary and conclusion

Support for further data types - besides doubles - is in progress

Further I/O optimizations (performance gains)

Future work

Feedback and suggestions for improvement are welcome

The architecture of the package is modular - various storage and caching
policies can be evaluated in the future

Re-implementing algorithms based on chunks (like the biglm package)

