
[,1]

How ff works

The ff package: Handling Large Data Sets in R
with Memory Mapped Pages of Binary Flat Files

D. Adler, O. Nenadiæ, W. Zucchini, C. Gläser
Institut für Statistik und Ökonometrie,

Georg-August-Universität Göttingen,
Germany

,

,August 8-10 2007
Iowa State University

 > tx <- ff("/tmp/texas_p", pagesize = 64*1024)

 > ind <- c(1,9000,9005,9010,188417:196609)
 > dat <- tx[ind]

 > dat
 [1] 32 0 0 27 0 38 40 0 0 0 0 0 43 49 19
 [16] 30 37 30 47 43 33 44 45 37 53 50 57 38 70 44
 [31] 0 0 0 0 0 30 67 37 37 60 47 70 44 29 50
 ...

Future Work

Comparison between ff and standard R objects

Introduction Package overview

disk space not used

page (here: 64 KB)

data entry (8 Bytes)

requested data

ff object

handle to flat file

sequence transformation

Array<T>

MultiArray<T>

FileMapper

FileSection

MultiIndex

virtual memory
space

flat file

(pre-set)

(dynamic)

The ff package comprises two parts, an and a . R part C++ part

C++ partR part

FileMapper FileSection

Opening / creating flat files
Controlled by the two core functions
ff and ffm

I/O operations
Controlled by the "[]" and the
"[]<-" operators

Generic functions / methods
Methods for dim and length;
sample converted to a generic
function

Auxillary functions
E.g. seqpack for sequence analysis
and ffm.data.frame for wrapping
ffm objects into data frames

An example of what happens behind the scenes:

tx

ind

txtx

dat

 [,1] [,2] [,3]
from 1 9000 188417
to 1 9010 196609
by 0 5 1

[,2] [,3]

Chunk based data processing

The requested data item
(at index 1) is in the
currently active page.

The next three requested
items are in the next page.
The corresponding page is
loaded and the items are
extracted

The third block of
requested items is split
over two pages. The first
page is mapped into main
memory and the items are
extracted

Then the next page
containing the remaining
entries is mapped and the
corresponding items are
extracted.

a flat file in native
binary format

The main functions are ff and ffm, which
are used for opening and creating flat files.
The syntax for I/O operations is equivalent
to native R objects, namely "[]" and "[]<-"
operators. Methods and generic functions
are provided.

The C++ part contains two parts, namely
abstractions to platform-specific services
(FileMapper and FileSection class) and a
collection of template container classes
(Array, MultiArray and MultiIndex for
doubles)

collection of template container classes

abstractions to platform-
specific services

The biglm package (T. Lumley) provides a facility for fitting
generalized linear models to large data sets (i.e. data sets that are
larger than memory).
In the examples below we demonstrate on a small data set how
ffm objects can be used as input for the bigglm function.

 > library("ff")
 > m <- ffm("/tmp/foom", dim = c(31,3))
 > data("trees")
 > m[1:31,1:3] <- trees[1:31,1:3]

 > library("biglm")
 > ffmdf <- ffm.data.frame(m,
 + c("Girth", "Height", "Volume"))
 > fg <- log(Volume) ~ log(Girth) + log(Height)

 > mod <- bigglm(fg, data = ffmdf, chunksize = 10,
 + sandwich = TRUE)
 > summary(mod)
 Large data regression model:
 bigglm(formula = formula, data = datafun, ...)
 Sample size = 31
 Coef (95% CI) SE p
 (Intercept) -6.632 -8.087 -5.176 0.728 0
 log(Girth) 1.983 1.871 2.094 0.056 0
 log(Height) 1.117 0.733 1.501 0.192 0
 Sandwich (model-robust) standard errors

The syntax is the same as in the bigglm example.
However, the fitting is carried out on a ffm object wrapped
into a ffm.data.frame object.

The trees data stored in m, a ffm object, are wrapped
into a ffm data frame. The model formula is defined in
the usual way (c.f. examples for bigglm).

After creating the ffm object m the "trees" data set
(31x3 matrix) is stored in m.

Limitations on 32-bit platforms:

memory limitations:
 - only 2-4 GB memory available

addressing limitations:
31 - maximum addressable range: 2 -1

chunk-based data processing

,

32-bit
index

32-bit
index

64-bit index

> as.integer(2^31-1)
[1] 2147483647
> as.integer(2^31)
[1] NA
Warning message:
NAs introduced by coercion

> x <- rep(0, 2^31-1)
Error: cannot allocate vector of length 2147483647

multi-indexing

The ff package is designed to overcome these limitations by
implementing a new container type (binary flat files)

64-bit platforms also benefit from the ff package (i.e. 8 GB
practical RAM limit, tweakable address space)

The package has been ported to Windows, Linux,
Mac OS X and FreeBSD; it is available from
http://wsopuppenkiste.wiso.uni-goettingen.de/ff + Windows™ (logo omitted

 due to trademark guidelines)

Support for additional data types besides doubles

Incorporating additional storage and caching policies (multi-
threaded, non-blocking I/O, prefetching)

I/O optimization (effect of the page size on performance)

Implementing chunk-based algorithms and methods (sum,
mean, var, min, max, ...)

Feedback and suggestions are welcome:
 <dadler,onenadi>@uni-goettingen.de

save the whales!

 > <- numeric(8000000)
 > <- rObj[]

rObj
aVal 1:2000000

 > <- ff(”foo”,8000000)
 > <- ffOb[]

ffOb
aVal 1:2000000

V
irtu

a
l M

e
m

o
ry

 A
d

d
re

s
s

 S
p

a
c

e

How the creation of n values effects the run-time virtual memory address space:

The amout of memory required
by an ff object.

512 kilobytes

The amout of memory required
by a native R vector object.

ff object: native R vector:

Indices storage
(reduced due to packing
of index sequences)

Resulting vector
storage

Data storage
(reduced due to memory-
mapped pages of flat files)

 The first part of the code shows how an existing flat file is "opened":
 by calling ff a handle to a flat file is established

 When extracting a subset of the data the commands do not differ
 from the "standard R procedure". However, the extraction procedure
 differs substantially

 The object returned is a standard R object

Indices storage
(temporary)

Resulting vector
storage

Data storage

p
a

g
e

 1
p

a
g

e
 2

p
a

g
e

 2
4

p
a

g
e

 2
5

	Page 1

