useR!

WU Vienna

useR!

random effect β_{il} is shrunk toward a fixed effect.

useR!

elements of C.

Vienna, 2006-06-15 1-4

$\beta_i = \beta^G + C\tilde{z}_i, \quad \tilde{z}_i \sim \mathcal{N}_d(0, I).$

The model in the **non-centered** parameterization:

We apply the Cholesky decomposition to the variance-covariance matrix Q:

 $y_i = Z_i \beta^G + Z_i C \tilde{z}_i + \varepsilon_i, \quad \tilde{z}_i \sim \mathcal{N}_d(0, I), \quad \varepsilon_i \sim \mathcal{N}_T(0, \sigma_c^2 I).$

Q = CC', C lower triangular.

The Random-Effects Model

Therefore the random effects equal:

Sylvia Frühwirth-Schnatter, Department of Applied Statistics and Econometrics, JKU Linz

Regina Tüchler, Department of Statistics and Mathematics,

Bayesian Covariance Selection in

Hierarchical Linear Mixed Models

Vienna, 2006-06-15

Vienna, 2006-06-15 1-1

The Random-Effects Model

In the centered parameterization the random effects model writes:

$$y_i = Z_i \beta_i + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}_{T_i}(0, \sigma_\varepsilon^2 I),$$

$$\beta_i = \beta^G + u_i, \quad u_i \sim \mathcal{N}_d(0, Q).$$

 y_i . . . vector of T_i repeated measurements for subject i,

 Z_i . . . design matrix $(T_i \times d)$,

Covariance Selection

- $\beta_i \dots$ vector of d random effects with mean β^G and covariance matrix Q_{i}
- ε_i . . . model error with variance σ_{ε}^2

useR!

Vienna, 2006-06-15 1-2

$C_{lm} = 0$, iff $\gamma_{lm} = 0$, $C_{lm} \neq 0$, iff $\gamma_{lm} = 1$, for l > m.

The elements C of the covariance matrix appear as regression

coefficients in the model equation. Therefore common variable

We define indicators γ_{lm} for the $d \cdot (d+1)/2$ lower triangular

If, for example all elements in the *l*-th row, $C_{l:}$, are 0, the *l*-th

selection tools may be applied to select elements in C.

Vienna, 2006-06-15 1-3

The MCMC algorithm

Step I: $\gamma_{lm}|\gamma_{\backslash lm},\beta^G,\tilde{z},\sigma_{\varepsilon}^2,y$ discrete with 2 possible outcomes.

Step II: Only the non-zero elements $C^{\gamma}|\gamma, \beta^G, \tilde{z}, \sigma_{\varepsilon}^2, y$ from a multivariate normal distribution.

Step III: $\beta^G | C^{\gamma}, \sigma_{\varepsilon}^2, y$ from a multivariate normal distribution based on the the marginal heteroscedastic model.

Step IV: $\tilde{z}|\beta^G, C^{\gamma}, \sigma_{\varepsilon}^2, y$ from a multivariate normal distribution.

Step VI: $\sigma_{\varepsilon}^2 | \beta^G, C^{\gamma}, \tilde{z}, y$ from an inverted Gamma distribution.

Vienna, 2006-06-15 1-5

Summary

useR!

- The new method makes it possible to start with a very general model.
- We may determine fixed effects and select a sparse structure in the covariance matrix of the remaining random effects.
- Improved convergence behaviour because we avoid to estimate over-fitted models.

Vienna, 2006-06-15 1-6