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Variable selection bias

I variable selection in classification trees is affected by

characteristics other than information content, e.g.

variables with more categories are preferred

e.g. Breiman, Friedman, Olshen, and Stone (1984),

Kim and Loh (2001), Dobra and Gehrke (2001)
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Standard simulation design

I binary response Y

I uninformative predictor variables X1, ...,Xp

I with different numbers of categories

I record relative frequency (e.g. out of 1000 iterations)

for each variable to be selected for the first split
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Standard simulation design

Y ∈ {1, 2}

X1 ∈ {1, . . . . . . . . . . . . . . . . . . , 20}
X2 ∈ {1, . . . . . . . . , 10}
X3 ∈ {1, . . , 4}
X4 ∈ {1, 2}

sampled independently
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Variable selection bias in classification trees

package: rpart

function: rpart
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Sources of variable selection bias

I estimation bias and variance of empirical entropy

measures (Strobl, Boulesteix, and Augustin, 2005)

I in binary splitting: multiple testing

(combined variable and cutpoint selection)
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Random forests

package: randomForest

functions: randomForest, importance

variable importance measure:

permutation accuracy importance

“In every tree grown in the forest, put down the oob cases and

count the number of votes cast for the correct class. Now

randomly permute the values of variable Xj in the oob cases and

put these cases down the tree. Subtract the number of votes for

the correct class in the variable-j-permuted oob data from the

number of votes for the correct class in the untouched oob data.

The average of this number over all trees in the forest is the raw

importance score for variable Xj .”
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Permutation accuracy importance

I informative variables produce a systematic decrease in

accuracy when permuted

I uninformative variables produce a random decrease or

increase in accuracy when permuted
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Permutation accuracy importance

employed as a criterion for variable selection in many recent

publications in biochemistry, neurology, forestry, etc., e.g. by

Bureau et al. (2005), Chen and Lin (2005), Cummings and

Segal (2004), Diaz-Uriarte and de Andrés (2006), Furlanello

et al. (2003), Guha and Jurs (2003), Jong et al. (2005),

Lunetta et al. (2003), Lunetta et al. (2004),

Ward et al. (2006) etc.
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Permutation accuracy importance

function: importance

option: scale=FALSE
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Permutation accuracy importance

function: importance

option: scale=TRUE
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Permutation accuracy importance

I due to variable selection bias in individual trees

⇒ variables with more categories end up closer to

root node of individual tree

I potential change in accuracy is more pronounced for

variables closer to root node

⇒ variable importance of variables with more categories

shows higher deviation
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Expectation

random forests built from unbiased trees

do not produce biased variable selection measures
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Unbiased variable selection criteria for

classification trees

I Strobl, Boulesteix, and Augustin (2005)

exact p-value of maximally selected Gini gain

package: exactmaxsel

function: maxsel.test

I Hothorn, Hornik, and Zeileis (2006)

p-value of independence test in conditional

inference framework

package: party

functions: ctree, cforest

internal: party:::varimp

Variable Selection

Bias in Ensemble

Methods

Variable selection

bias

Random forests

randomForest

cforest

Implication

References

Permutation accuracy importance

internal: party:::varimp
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Number of times variable is selected

in individual trees
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Bootstrap bias

distribution of the p-values of a χ2-test before and after

bootstrapping (1000 iterations, each n = 10 000)
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Bootstrap bias

I bootstrap sampling with replacement artificially

induces an association

I the effect is more pronounced for contingency tables

with more cells and more df
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Expectation

when samples (e.g. of the size 0.632·n) are drawn

without replacement the bias is eliminated
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Number of times variable is selected

in individual trees
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Permutation accuracy importance

internal: party:::varimp

option: replace=FALSE

●
●●

●
●●
●

●

●●●

●

●

●●
●●
●

●

●

●●

●

●●●

●

●●●

●

●
●●
●

●

●●
●
●
●

●

●

●
●

●
●●
●
●●●

●

●

●

●
●
●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●●

●●●
●

●●
●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●●●●●

●
●
●

●●●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●●

●

●

●

●●
●
●●

●

●
●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●
●●
●

●
●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●
●

●
●●

●

●

●
●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●●

●

●●●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●
●
●●●

●

●

●

●

●

●●

●

●

X1 X2 X3 X4

−
0.

05
0.

00
0.

05

va
ria

bl
e 

im
po

rt
an

ce

Variable Selection

Bias in Ensemble

Methods

Variable selection

bias

Random forests

Implication

References

Implication

if your potential predictors vary in their number of

categories or scale level

I use variable importance of unbiased cforest

I with option replace=FALSE

for the evaluation of variable importance and

for variable selection
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