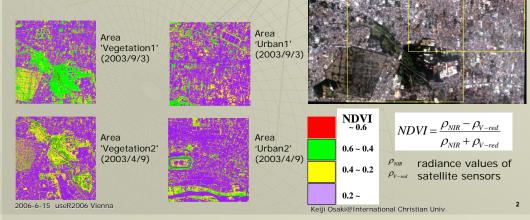
Spatial characteristics of vegetation index map in urban area derived by variogram analysis

Keiji Osaki

International Christian Univ. Tokyo, Japan

Variogram characteristics reflect features of spatial structure of objects

Definition of semi-variance & variogram characteristics: sill, range


$$\gamma_o(h) = \frac{1}{2N(h)} \sum_{k=1,N} (NDVI_k - NDVI_{k+h})^2$$

 Observed semi-variances fitted to 'nested spherical model' with two sets of variogram attributes(sill and range)

$$(h) = \begin{cases} \sum_{i=1,2} Sill_i \{\frac{3}{2} \frac{h}{Range_i} - \frac{1}{2} (\frac{h}{Range_i})^3\}, for \ 0 < h < Range_i \\ \sum_{i=1,2} Sill_i, & for \ h > Range_i \end{cases}$$

Vegetation analysis by satellite data(QuickBird)

- NDVI (Vegetation Index) colored map derived from satellite data
- Richly vs. poorly vegetated areas (boxed areas)
- Attempt to extract vegetation features of urban area in Tokyo by a variogram analysis

Variogram calculated by package 'gstat' in 'R' (by Pebesma,2004 for geostatistical analysis)

5 -0.3967 6 -0.3599

6 -0.3053

6 -0.3004

6 0.2012

7 -0.3598

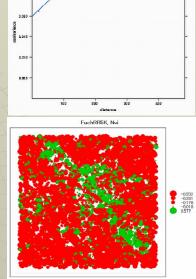
- A sample of spatial data set : 'frr.dat', 5000 observed points, 4 variables
- > rr.fit <-</p>

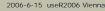
fit.variogram(rr.vgm,model=vgm(1, "Sph",130,1))

- > rr.fit
- model psill range
- 1 Nug 0.01990784 0.000
- 2 Sph 0.01063540 219.205
- > bubble(rr,"Nvi",main="FuchRR5K, Nvi ")

646

5 105

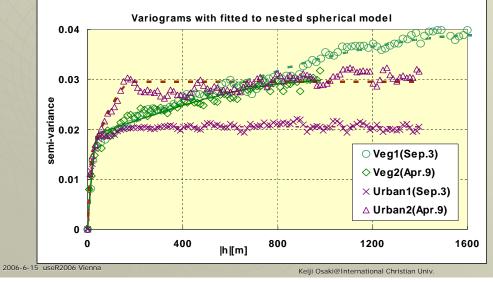

2 156


3 465

4 628

6 75

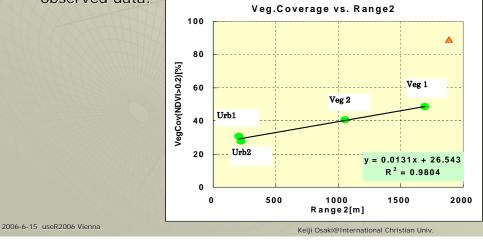
 Cf. NDVI map of 'Vegetation2' (2003/4/9)



Si112

Sill1

Variogram characteristics derived from 'nls' in 'R' (Nonlinear Least Squares Regression)


- Variograms for vegetation and urban areas with lines fitted to 'nested spherical' model.
- Nested spherical model fits observed variograms without any 'nugget' better than single spherical model with a 'nugget'.

5

Conclusions

- Richly vegetated areas show large 'Range' of variogram, while urban areas show much smaller 'Range' value.
- Mixed of vegetated and non-vegetated area might reflect a rather large fluctuation in variogram as seen in 'Urban2'.
- Relationship between percentile of vegetation coverage and a 'range' of variogram. Circles are derived from satellite observed data.

