KernGPLM - A Package for Kernel-Based Fitting of Generalized Partial Linear and Additive Models

Financial application: Credit Rating

- new interest in this field because of Basel II:
capital requirements of a bank are adapted to the individual credit portfolio
- key problems: determine rating score and subsequently default probabilities (PDs) as a function of some explanatory variables
\rightarrow classical logit/probit-type models to estimate linear predictors (scores) and probabilities (PDs)

Two objectives:

- study single factors
- find the best model

Aim of this Talk
 analysis of highdimensional data by semiparametric (generalized) regression models

- compare different approaches to additive models (AM) and generalized additive models (GAM)
- include categorical variables \Longrightarrow partial linear terms (combination of AM/PLM and GAM/GPLM)
- provide software \Rightarrow R package KernGPLM
- focus on kernel-based techniques for high-dimensional data

Binary choice model

\rightarrow credit rating: estimate scores + PDs

$$
P(Y=1 \mid \boldsymbol{X})=E(Y \mid \boldsymbol{X})=G\left(\boldsymbol{\beta}^{\top} \boldsymbol{X}\right)
$$

\rightarrow parametric binary choice models

$$
\begin{array}{lll}
\text { logit } & P(Y=1 \mid \boldsymbol{X})=F\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}\right) & F(\bullet)=\frac{1}{1+e^{-\bullet}} \\
\text { probit } & P(Y=1 \mid \boldsymbol{X})=\Phi\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}\right) & \Phi(\bullet) \text { standard normal cdf }
\end{array}
$$

Generalized linear model (GLM)

$$
E(Y \mid \boldsymbol{X})=G\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}\right)
$$

Data Example: Credit Data

References: Fahrmeir/Hamerle (1984); Fahrmeir \& Tutz (1995)

- default indicator: $Y \in\{0,1\}$, where $1=$ default
- explanatory variables:
personal characteristics, credit history, credit characteristics
- sample size: 1000 (stratified sample with 300 defaults)

Estimated (Logit) Scores

$$
\begin{aligned}
\text { Score }=1.334 & -0.763^{\star \star \star} \cdot \text { previous }-0.310 \cdot \text { employed }+0.566^{\star \star} \cdot(\mathrm{d} 9-12) \\
& +0.898^{\star \star} \cdot(\mathrm{d} 12-18)+0.981^{\star \star \star} \cdot(\mathrm{d} 18-24)+1.550^{\star \star \star} \cdot(\mathrm{d}>24) \\
& -0.984^{\star \star \star} \cdot \text { savings }-0.363^{\star \star} \cdot \text { purpose }+0.660^{\star \star \star} \cdot \text { house } \\
& -0.000251^{\star \star} \cdot \text { amount }-0.0942^{\star \star} \cdot \text { age }+0.0000000173^{\star \star} \cdot \text { amount }^{2} \\
& +0.000833^{\star} \cdot \text { age }^{2}+0.00000236 \cdot(\text { amount } \cdot \text { age })
\end{aligned}
$$

${ }^{\star},{ }^{* *},{ }^{* * *}$ denote significant coefficients at the $10 \%, 5 \%, 1 \%$ level, respectively

Semiparametric Models

- local regression

$$
E(Y \mid \boldsymbol{T})=G\{m(\boldsymbol{T})\}, \quad m \text { nonparametric }
$$

- generalized partial linear model (GPLM)

$$
E(Y \mid \boldsymbol{X}, \boldsymbol{T})=G\left\{\boldsymbol{X}^{\top} \boldsymbol{\beta}+m(\boldsymbol{T})\right\} \quad m \text { nonparametric }
$$

- generalized additive partial linear model (semiparametric GAM)

$$
E(Y \mid \boldsymbol{X}, \boldsymbol{T})=G\left\{\beta_{0}+\boldsymbol{X}^{\top} \boldsymbol{\beta}+\sum_{j=1}^{p} m_{j}\left(T_{j}\right)\right\} \quad m_{j} \text { nonparametric }
$$

Some references

Loader (1999), Hastie and Tibshirani (1990), Härdle et al. (2004), Green and Silverman (1994)

Data Example: Logit (with interaction)

credit default on AGE and AMOUNT using quadratic and interaction terms, left: surface and right: contours of the fitted score function

Data Example: GPLM

credit default on AGE and AMOUNT using a nonparametric function, left: surface and right: contours of the fitted score function on AGE and AMOUNT

Estimation Approaches for GPLM/GAM

- GPLM:
* generalization of Speckman's estimator (type of profile likelihood)
* backfitting for two additive components and local scoring

References
(PLM) Speckman (1988), Robinson (1988); (PLM/splines) Schimek (2000), Eubank et al. (1998), Schimek (2002); (GPLM) Severini and Staniswalis (1994), Müller (2001)

- semiparametric GAM:
* [modified|smooth] backfitting and local scoring
* marginal [internalized] integration

References:
(marginal integraton) Tjøstheim and Auestad (1994), Chen et al. (1996),
Hengartner et al. (1999), Hengartner and Sperlich (2005);
(backfitting) Buja et al. (1989), Mammen et al. (1999), Nielsen and Sperlich (2005)

Comparison of Algorithms

	parametric step	nonparametric step	est. matrix
Speckman	$\boldsymbol{\beta}^{\text {new }}=\left(\widetilde{\mathcal{X}}^{T} \mathcal{W} \widetilde{\mathcal{X}}\right)^{-1} \widetilde{\mathcal{X}}^{T} \mathcal{W} \widetilde{\boldsymbol{Z}}$	$m^{\text {new }}=\mathbf{S}(\boldsymbol{Z}-\mathcal{X} \boldsymbol{\beta})$	$\eta=\mathcal{R}^{S} \boldsymbol{Z}$
Backfitting	$\boldsymbol{\beta}^{\text {new }}=\left(\mathcal{X}^{T} \mathcal{W} \widetilde{\mathcal{X}}\right)^{-1} \mathcal{X}^{T} \mathcal{W} \widetilde{\boldsymbol{Z}}$	$m^{\text {new }}=\mathbf{S}(\boldsymbol{Z}-\mathcal{X} \boldsymbol{\beta})$	$\eta=\mathcal{R}^{B} \boldsymbol{Z}$
Profile	$\boldsymbol{\beta}^{\text {new }}=\left(\mathcal{X}^{T} \mathcal{W} \widetilde{\mathcal{X}}\right)^{-1} \mathcal{X}^{T} \mathcal{W} \widetilde{\boldsymbol{Z}}$	$m^{\text {new }}=\ldots$	$\eta=\mathcal{R}^{P} \boldsymbol{Z}$

Speckman/Backfitting:

$\widetilde{\mathcal{X}}=(\mathbf{I}-\mathbf{S}) \mathcal{X}, \widetilde{\boldsymbol{Z}}=(\mathbf{I}-\mathbf{S}) \boldsymbol{Z}, \mathbf{S}$ weighted smoother matrix
Profile Likelihood:
$\widetilde{\mathcal{X}}=\left(\mathbf{I}-\mathbf{S}^{P}\right) \mathcal{X}, \widetilde{\boldsymbol{Z}}=\left(\mathbf{I}-\mathbf{S}^{P}\right) \boldsymbol{Z}, \mathbf{S}^{P}$ weighted (different) smoother matrix
References: Severini and Staniswalis (1994), Müller (2001)

Estimation of the GPLM: generalized Speckman estimator

- partial linear model (identity G)

$$
\begin{aligned}
E(Y \mid \boldsymbol{X}, \boldsymbol{T}) & =\boldsymbol{X}^{T} \boldsymbol{\beta}+m(\boldsymbol{T}) \\
\Longrightarrow \quad \boldsymbol{m}^{\text {new }} & =\mathbf{S}(\boldsymbol{Y}-\mathcal{X} \boldsymbol{\beta}) \\
\boldsymbol{\beta}^{\text {new }} & =\left(\widetilde{\mathcal{X}}^{T} \widetilde{\mathcal{X}}\right)^{-1} \widetilde{\mathcal{X}}^{T} \widetilde{\boldsymbol{Y}}
\end{aligned}
$$

- generalized partial linear model

$$
E(Y \mid \boldsymbol{X}, \boldsymbol{T})=G\left\{\boldsymbol{X}^{T} \boldsymbol{\beta}+m(\boldsymbol{T})\right\}
$$

$\Longrightarrow \quad$ above for adjusted dependent variable

$$
Z=\mathcal{X} \boldsymbol{\beta}+m-\mathcal{W}^{-1} \boldsymbol{v}
$$

$$
\boldsymbol{v}=\left(\ell_{i}^{\prime}\right), \mathcal{W}=\operatorname{diag}\left(\ell_{i}^{\prime \prime}\right)
$$

References: Severini and Staniswalis (1994)

Estimation of the GAM

$$
E(Y \mid \boldsymbol{X}, \boldsymbol{T})=G\left\{\beta_{0}+\boldsymbol{X}^{\top} \boldsymbol{\beta}+\sum_{j=1}^{p} m_{j}\left(T_{j}\right)\right\} \quad m_{j} \text { nonparametric }
$$

- classical backfitting: fit single components by regression on the residuals w.r.t the other components
- modified backfitting: first project on the linear space spanned by all regressors and then nonparametrically fit the partial residuals
- marginal (internalized) integration: estimate the marginal effect by integrating a full dimensional nonparametric regression estimate
\Longrightarrow original proposal is computationally intractable: $O\left(n^{3}\right)$
\Longrightarrow choice of nonparametric estimate is essential: marginal internalized integration

Simulation Example: True Additive Function

to. 1
Marginal integration - as initialization for backfitting

Comparison of Algorithms

- consistency of marginal integration:
\Rightarrow if underlying function is truly additive, backfitting outperforms marginal integration
\Rightarrow consider marginal integration to initialize backfitting (replacing the usual zero-functions
- comparison of backfitting and marginal integration:
\Rightarrow marginal integration indeed estimates marginal effects, but large number of observations is needed
\Rightarrow estimation method of the instruments is essential, dimension reduction techniques are required
- M - pdf estimate 1
- M - pdf estimate 2
- M - normal pdfs
- B - classical
- B - modified

Simulation Example: True Non-Additive Function

${ }^{\text {to. } 11}$
Marginal integration - estimate of marginal effects

Summary

- GPLM and semiparametric GAM are natural extensions of the GLM
- large amount of data is needed for estimating marginal effects
$\Rightarrow \mathrm{R}$ package KernGPLM with routines for
* (kernel based) generalized partial linear and additive models
\star additive components by [modified] backfitting + local scoring
\star additive components by marginal [internalized] integration
- possible extensions:
* smooth backfitting
\star externalized marginal integration
- M - classical
- M - pdf estimate 1
- M - pdf estimate 2
- M - normal pdfs

References

Buja, A., Hastie, T., and Tibshirani, R. (1989). Linear smoothers and additive models (with discussion). Annals of Statistics, 17:453-555

Chen, R., Härdle, W., Linton, O., and Severance-Lossin, E. (1996). Estimation and variable selection in additive nonparametric regression models. In Härdle, W. and Schimek, M., editors, Proceedings of the COMPSTAT Satellite Meeting Semmering 1994, Heidelberg. Physica Verlag

Eubank, R. L., Kambour, E. L., Kim, J. T., Klipple, K., Reese, C. S., and Schimek, M. G. (1998). Estimation in partially linear models. Computational Statistics \& Data Analysis, 29:27-34
Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Mode/s, volume 58 of Monographs on Statistics and Applied Probability. Chapman and Hall, London.

Härdle, W., Müller, M., Sperlich, S., and Werwatz, A. (2004). Nonparametric and Semiparametric Modeling An Introduction. Springer, New York

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models, volume 43 of Monographs on Statistics and Applied Probability. Chapman and Hall, London.
Hengartner, N., Kim, W., and Linton, O. (1999). A computationally efficient oracle estimator for additive nonparametric regression with bootstrap confidence intervals. Journal of Computational and Graphical Statistics, 8:1-20.

Hengartner, N. and Sperlich, S. (2005). Rate-optimal estimation with the integration method in the presence of many covariates. Journal of Multivariate Analysis, 95:246-272.

Loader, C. (1999). Local Regression and Likelihood. Springer, New York

Mammen, E., Linton, O., and Nielsen, J. P. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Annals of Statistics, 27:1443-1490.

Müler, M. (2001). Estimation and testing in generalized partial linear models - a comparative study. Statistics and Computing, 11:299-309

Nielsen, J. and Sperlich, S. (2005). Smooth backfitting in practice. Journal of the Royal Statistical Society, Series B, 67:43-61.

Robinson, P. M. (1988). Root n-consistent semiparametric regression. Econometrica, 56:931-954
Schimek, M. G. (2000). Estimation and inference in partially linear models with smoothing splines. Journal of Statistical Planning and Inference, 91:525-540

Severini, T. A. and Staniswalis, J. G. (1994). Quasi-likelihood estimation in semiparametric models. Journal of the American Statistical Association, 89:501-511

Speckman, P. E. (1988). Regression analysis for partially linear models. Journal of the Royal Statistical Society Series B, 50:413-436.

Tjøstheim, D. and Auestad, B. (1994). Nonparametric identification of nonlinear time series: Projections Journal of the American Statistical Association, 89:1398-1409.

