
Teaching the Theory of

Information

and Coding with R
Rafael Pino Mejías, Mª Dolores Cubiles de la Vega

Statistics Department, University of Seville, SPAIN

Computer Science Engineering

University of Seville

Theory of Information and Coding

5 ECTS credits

First term of Third year

4 hours per week

Theory/Problems: 2 hours

Computer room: 2 hours

The Theory of Information and Coding was developed to deal with the

fundamental problem of comunication, that of reproducing at one point, either

exactly or approximately, a message sent from another point.

Source

Coder Decoder

Destination

m m̂

Communication

Channel
Probability of error > 0

v
r

Error-correcting code

Communication rate= size(m)/size(v)

Information Theory:

Theoretical capabilities of these communication systems considering

the communication rate and the probability of error of the codes.

Coding Theory:

This is concerned with the design of effective error-correction codes.

When the code is designed to reduce the requirement of memory

resources for storing data, it is a compressor code.

Part one: Information Theory

1. Introduction to Theory of Information

2. Discrete memoryless channels

Part two: Coding Theory

3. Linear codes

4. Cyclic codes

Part three: Compression

5. Data compression

6. Image compression

Part four:

7. Introduction to Data Mining

Computer classes

based on the

R system

(syllabus)

Benefits of the R system:

• Computer science students know the art of

programming

• They understand a theme better when they program it

• It interfaces with other languages (C)

• It is a free system

• It has a powerful programming language

• It contains extensive and powerful graphics abilities

• The R system is continuously being developed

Classes

Theory
Problems and

questions

Computer practicals:

R programs

InformationCoding Library

currently in a developing phase
Data Mining libraries

Teaching methodology

The practicals include the design, use and programming with the R system. On

one hand, the “InformationCoding Library” is still being developed, and on the

other hand, the last chapter is available in R.

This library is still in the construction stage and can be found in four

main blocks:

1. Entropy functions

These functions compute entropy (univariate, joint, conditional) and

mutual information.

2. Simulation of communication channels

This block lets the transmission of a message over a digital

communication channel be simulated. Some numerical and graphical

summaries are produced.

3. Run-length codes

Coding and decoding of some classic algorithms used to compress data.

Some of these codes are associated to the pioneer work of Claude

Shannon.

4. Fixed-length codes

These functions code and decode messages with some of the most

important algorithms used in coding practice.

InformationCoding Library InformationCoding library:

Block 1: Entropy functions

Some of these functions are:

entropyone(p): computes the entropy function given a probability p defining a two-

result vector probability (p,1-p)

entropytwo(x,y): computes the entropy function given two probabilities x,y which

define a three-result vector probability (x,y,1-x-y)

entropy(p): computes the entropy function from a probability vector p

jointentropy(P): computes the joint entropy function from a probability matrix P

condientropy(P,margin): computes the conditional entropy function from a

probability matrix by conditioning on the rows (margin=1) or the columns

(margin=2). It also obtains the conditional entropy for each of the rows or columns.

mutinf(P): computes the mutual information given a probability matrix P.

Some of the previous functions can be utilized to graphically represent the entropy:

entropyone<- function(p)

{

p*log2(1/p) + (1-p)*log2(1/(1-p))

}

curve(entropyone,0,1,1000, col="blue", lwd=2,

xlab="p",ylab="H2", main=“Entropy, H(X),

n=2", type="l")

entropytwo<-function(x,y)

{z<- 1-x-y

ifelse(z>0,-x*log2(x)-y*log2(y)-z*log2(z),0)

}

x<-(0:100)/100

y<-(0:100)/100

z<-outer(x,y,entropytwo)

persp(x, y, z, theta = 15, phi = 30, expand =

0.5, col = "lightblue", xlab="p1", ylab="p2",

zlab="H", main="H, n=3")

InformationCoding library:

Block 2: Simulation of Communication Channels

simulate.channel(n, a, p, prober, mis): this simulates the transmission of a message formed

by n symbols of the alphabet a, with vector probability p and a probability of error prober.

mis=TRUE allows missing symbols (coded as -1) in the transmission.

simulate.bsc(n, l, prober): this simulates the transmission over a binary symmetric channel

of a message formed by n binary vectors of size l, and a probability of error prober.

An example to illustrate the information produced by the function:

simulate.channel(100,c(0,1,2),c(1/3,1/3,1/3),0.15,TRUE)

IC 95% probability of error= (0.1495564 , 0.1964436)

Distribution of sent symbols (%):

0 1 2

34.1 33.5 32.4

Distribution of received symbols (%):

-1 0 1 2

5.3 31.8 32.3 30.6

Distribution of source symbols presenting errors:

0: 17.59%

1: 17.31%

2: 16.97%

InformationCoding library:

Block 3: Run-Length Codes

The Run-Length codes currently implemented are Shannon, Shannon-Fano, and

Arithmetic code, while Huffman code is in developing phase.

For example:

Shannon.code(m, a, p): this obtains the Shannon codes for the message m from an alphabet a

with associated probability vector p.

Shannon.decode(rec, a, p): decoding the Shannon code.

STEP 1: Sort the messages mi by sorting their probabilities into decreasing order.

messsort<-sort(p, decreasing=TRUE, index.return=TRUE)

m<-m[messort$ix]

p<-messort$x

STEP 2: Compute i: 1 =0, 2 =P(m1), 3=P(m1)+ P(m2),.…, M=1-P(mM)

(accumulated probabilities)

computealpha<-function(p)

{ long<-length(p)

c(0,cumsum(p[-long]) }

STEP 3: Determine ni: 2
ni ≥ 1/pi ≥ 2ni-1 (determinig ni such that is fulfilled)

seekN<-function(p)

{ ceiling(-log2(p)) }

STEP 4: The code of mi is the binary expression of i up to the ni
th binary digit

binarycode<-function(a,n)

{ auxi<-c()

for(i in 1:n)

{

auxi[i]<-floor(a*2)

a<-a*2-floor(a*2)

}

auxi

}

> #Example

> p<-c(0.25,0.30,0.10,0.20,0.10,0.05)

> m<-c(1,2,3,4,5,6); a<- c(1,2,3,4,5,6)

> shannon(m,a,p)
m p

2 0.30 0 0

1 0.25 0 1

4 0.20 1 0 0

3 0.10 1 1 0 0

5 0.10 1 1 0 1

6 0.05 1 1 1 1 0

InformationCoding library:

Block 4: Fixed-Length Codes

Repetition codes

Linear codes:

Hamming

Golay

Reed-Muller

Cyclic codes:

Polynomial codes

Reed-Solomon

The last block of this library includes the following fixed-length

codes:

InformationCoding library:

Fixed-Length Codes

Repetition codes

rep.code(s, N): this codes the message s with a repetition code,

therefore each symbol in s is repeated N times.

rep.decode(rec, N): this decodes the received message rec by taking

the majority vote of each N consecutive bits.

proberror(prober, N): this function computes the bit probability

error of a repetition code in a symmetric binary channel with error

probability prober.

rep.code<-function(s,N)

{rep(s, each=N)}

It is very easy to write some of these functions in R:

InformationCoding library:

Fixed-Length Codes

Repetition codes

curve(x*1, 0,1,100,col="black",lty=2,main="Bit probability error of the repetition code,

N=2n+1",lwd=2,ylab=”Pe”,xlab=”p”)

curve(proberror(x,3),0,1,200,col="red",lwd=2,add=TRUE)

curve(proberror(x,5),0,1,200,col="green",lwd=2,add=TRUE)

curve(proberror(x,11),0,1,200,col="blue",lwd=2,add=TRUE)

corner<-par()$usr

legend(corner[3], corner[4], col=c(“red”,”green”,”blue”), pch=1, legend=paste(“n=”,c(1,2,5)))

The function “proberror” can be graphically represented by means of the “curve” function:

InformationCoding library

Fixed-Length Codes, Linear Codes:

Hamming Codes
controlmatrix.Ham(r): this builds the control matrix of the Hamming code with length

2r- 1 and dimension 2r-r-1.

code.Ham(m,r): this codes the message m with the Hamming code.

decode.Ham(rec,r): this decodes the message m with the Hamming code.

proberr.Ham(r): this function computes the block error probability of the Hamming

code.

codewords.Ham(r): list of the codewords of the Hamming code.

> codewords.Ham(3)

[1,] 0 0 0 0 0 0 0

[2,] 0 0 0 1 1 1 1

[3,] 0 0 1 0 0 1 1

[4,] 0 0 1 1 1 0 0

[5,] 0 1 0 0 1 0 1

[6,] 0 1 0 1 0 1 0

[7,] 0 1 1 0 1 1 0

[8,] 0 1 1 1 0 0 1

[9,] 1 0 0 0 1 1 0

[10,] 1 0 0 1 0 0 1

[11,] 1 0 1 0 1 0 1

[12,] 1 0 1 1 0 1 0

[13,] 1 1 0 0 0 1 1

[14,] 1 1 0 1 1 0 0

[15,] 1 1 1 0 0 0 0

[16,] 1 1 1 1 1 1 1

InformationCoding library

Fixed-Length Codes, Linear Codes:

Golay Codes

genmatrix.Golay(r): this builds the generator matrix of the

Golay-24 code (r=24) or the Golay-23 code (r=23).

code.Golay(m, r): this codes message m with the Golay code.

decode.Golay(rec, r): this decodes message rec with the Golay

code.

Reed Muller Codes

genmatrix.RM(r): this builds the generator matrix of the Reed

Muller code with length 2r and dimension r+1.

code.RM(m, r): this codes message m with the Golay code.

decode.RM(rec, r): this decodes message rec with the Golay

code.

> genmatrix.RM(4)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

> genmatrix.RM(3)

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

Example of Reed Muller code

These are the matrices of Reed Muller generator of order 3 and 4 respectively:

> m

[,1] [,2] [,3] [,4]

[1,] 0 0 0 1

[2,] 0 1 0 1

[3,] 0 0 0 0

[4,] 0 0 1 0

[5,] 0 1 1 0

[6,] 1 1 1 1

[7,] 1 0 1 1

[8,] 0 1 1 1

[9,] 1 1 1 0

[10,] 0 1 0 0

>t<- code.RM(m,3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0 0 0 1 1 1 1

[2,] 0 1 0 1 1 0 1 0

[3,] 0 0 0 0 0 0 0 0

[4,] 0 0 1 1 0 0 1 1

[5,] 0 1 1 0 0 1 1 0

[6,] 1 0 0 1 0 1 1 0

[7,] 1 1 0 0 0 0 1 1

[8,] 0 1 1 0 1 0 0 1

[9,] 1 0 0 1 1 0 0 1

[10,] 0 1 0 1 0 1 0 1

Example of Reed Muller code

We suppose the following message formed by 10 vectors of size 4:

The resulting code would be:

Given the generator matrix G then the coding of

a vector s becomes

(s%*%G)%%2

We can simulate the transmission of the coded message with the function simulate.csb:

> r<- simulate.csb(t,0.1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1 0 0 0 1 1 1 1

[2,] 0 1 0 1 1 1 1 0

[3,] 0 0 0 0 0 0 0 0

[4,] 0 0 1 1 0 0 1 1

[5,] 0 1 1 0 0 1 1 0

[6,] 1 0 1 1 0 0 1 0

[7,] 0 1 1 0 0 0 1 1

[8,] 0 1 1 0 1 0 0 1

[9,] 1 0 0 1 1 0 0 1

[10,] 0 1 1 1 0 0 0 1

> decode.RM(r,3)

[,1] [,2] [,3] [,4]

[1,] 0 0 0 1

[2,] 0 1 0 1

[3,] 0 0 0 0

[4,] 0 0 1 0

[5,] 0 1 1 0

[6,] 0 0 0 0

[7,] 0 0 1 0

[8,] 0 1 1 1

[9,] 1 1 1 0

[10,] 0 0 0 0

The decoding of the received message is

obtained with the function decode.RM

These require the implementation of the elements of the Galois Field

GF(2n), including the sum and product functions

The Reed Solomon codes work with blocks of n symbols: whereas in

the previous codes K bits are coded as a codeword of size N bits, now

K blocks of n bits are coded by N blocks of n bits.

Reed Solomon Codes

These are based on the polynom R library

Systematic coding of a cyclic polynomial code

Syndrome decoding based on a reduced syndrome table

InformationCoding library

Fixed-Length Codes, Cyclic codes

Polynomial codes

Polynomgen.RS(N, K, n): generator polynomial for a Reed

Solomon code with length N, dimension K, over a Galois Field

GF(2n).

code.RS(m, N, K, n): codes the message m with the Reed Solomon

code.

decode.RS(rec, N, K ,n): decodes the message rec with the Reed

Solomon code. It is based on the Berlekamp Massey algorithm.

which becomes a coded message, 7 elements of GF(23),:

001 000 111 000 110 110 111

We want to send this message, 3 elements of GF(23):

110 110 111

Example of Reed Solomon Codes

n=3, K=3, N=7

Data Mining

The subject also includes an introduction to the main machine-

learning models. The brief theoretical presentation is

accompanied by some examples.

Neural Networks: multilayer perceptron with the nnet library.

CART: Classification and regression trees with the rpart library.

SVM: Support Vector Machines with the svm function in the

e1071 library.

