Teaching the Theory of Information and Coding with \mathbf{R}

Rafael Pino Mejías, M ${ }^{\text {a }}$ Dolores Cubiles de la Vega
Statistics Department, University of Seville, SPAIN

The Theory of Information and Coding was developed to deal with the fundamental problem of comunication, that of reproducing at one point, either exactly or approximately, a message sent from another point.

Information Theory:

Theoretical capabilities of these communication systems considering the communication rate and the probability of error of the codes.
Coding Theory:
This is concerned with the design of effective error-correction codes. When the code is designed to reduce the requirement of memory resources for storing data, it is a compressor code.
Computer classes
based on the
R system
(syllabus) $\left\{\begin{array}{l}\begin{array}{l}\text { Part one: Information Theory } \\ \text { 1. Introduction to Theory of Information } \\ \text { 2. Discrete memoryless channels } \\ \text { Part two: Coding Theory } \\ \text { 3. Linear codes } \\ \text { 4. Cyclic codes } \\ \text { Part three: Compression } \\ \text { 5. Data compression } \\ \text { 6. Image compression } \\ \text { Part four: } \\ \text { 7. Introduction to Data Mining }\end{array} \\ \hline\end{array}\right.$

Benefits of the R system:

- Computer science students know the art of programming
- They understand a theme better when they program it
- It interfaces with other languages (C)
- It is a free system
- It has a powerful programming language
- It contains extensive and powerful graphics abilities
- The R system is continuously being developed

InformationCoding Library

This library is still in the construction stage and can be found in four main blocks:

1. Entropy functions

These functions compute entropy (univariate, joint, conditional) and mutual information.
2. Simulation of communication channels

This block lets the transmission of a message over a digital communication channel be simulated. Some numerical and graphical summaries are produced.
3. Run-length codes

Coding and decoding of some classic algorithms used to compress data. Some of these codes are associated to the pioneer work of Claude Shannon.
4. Fixed-length codes

These functions code and decode messages with some of the most important algorithms used in coding practice.

The practicals include the design, use and programming with the R system. On one hand, the "InformationCoding Library" is still being developed, and on the other hand, the last chapter is available in R.

InformationCoding library:
 Block 1: Entropy functions

Some of these functions are:
entropyone(p): computes the entropy function given a probability p defining a tworesult vector probability ($\mathrm{p}, 1-\mathrm{p}$)
entropytwo(x,y): computes the entropy function given two probabilities x, y which define a three-result vector probability ($\mathrm{x}, \mathrm{y}, 1-\mathrm{x}-\mathrm{y}$)
entropy(p): computes the entropy function from a probability vector p
jointentropy (\mathbf{P}) : computes the joint entropy function from a probability matrix P
condientropy(P,margin): computes the conditional entropy function from a probability matrix by conditioning on the rows (margin=1) or the columns (margin=2). It also obtains the conditional entropy for each of the rows or columns.
mutinf(P$)$: computes the mutual information given a probability matrix P .

Some of the previous functions can be utilized to graphically represent the entropy:

```
entropyone<- function(p)
ent
p*}\operatorname{log}2(1/p)+(1-p)*\operatorname{log}2(1/(1-p)
}
curve(entropyone, 0,1,1000, col="blue", lwd=2,
xlab="p",ylab="H2", main="Entropy, H(X),
n=2", type="l" )
entropytwo<-function(x,y)
{z<-1-x-y
ifelse(z>0,-x*\operatorname{log}2(x)-y*\operatorname{log}2(y)-z*\operatorname{log}2(z),0)
}
x<-(0:100)/100
y<-(0:100)/100
z<-outer(x,y,entropytwo)
persp(x,y, z, theta = 15, phi = 30, expand =
0.5, col = "lightblue", xlab="p1", ylab="p2",
zlab="H", main="H, n=3")
```


InformationCoding library:

Block 2: Simulation of Communication Channels

simulate.channel(n, a, p, prober, mis): this simulates the transmission of a message formed by n symbols of the alphabet a, with vector probability p and a probability of error prober. $m i s=$ TRUE allows missing symbols (coded as -1) in the transmission.
simulate.bsc(n, l, prober): this simulates the transmission over a binary symmetric channel of a message formed by n binary vectors of size 1 , and a probability of error prober.

An example to illustrate the information produced by the function:
simulate.channel $(100, \mathrm{c}(0,1,2), \mathrm{c}(1 / 3,1 / 3,1 / 3), 0.15$, TRUE $)$
IC 95% probability of error $=(0.1495564$, 0.1964436) Distribution of sent symbols (\%):

$$
\begin{array}{rrr}
0 & 1 & 2
\end{array}
$$

$$
\begin{array}{llll}
34.1 & 33.5 & 32.4
\end{array}
$$

Distribution of received symbols ($\%$):
$\begin{array}{lllll}-1 & 0 & 1 & 2\end{array}$
$\begin{array}{llll}5.3 & 31.8 \quad 32.3 \quad 30.6\end{array}$
Distribution of source symbols presenting errors:
0: 17.59\%
1: 17.31\%
2: 16.97\%

STEP 3: Determine $n_{i}: 2^{n i} \geq 1 / p_{i} \geq 2^{n i-1} \quad$ (determinig n_{i} such that is fulfilled)
seekN<-function(p)
\{ ceiling(-log2(p)) \}
STEP 4: The code of m_{i} is the binary expression of α_{i} up to the $n_{i}^{\text {th }}$ binary digit
binarycode<-function(a,n)
\{ auxi<-c()
for(i in 1:n)
\{
auxi[i]<-floor(a*2)
$a<-a * 2-f l o o r(a * 2)$
\}
auxi
\}

```
> #Example
> p<-c(0.25,0.30,0.10,0.20,0.10,0.05)
>m<-c(1,2,3,4,5,6); a<- c(1,2,3,4,5,6)
> shannon(m,a,p)
m p
20.30 0 0
0.25 0 1
0.20 1 0 0
0.10 1 1 0 0
0.10 1 1 0 1
6
```


InformationCoding library:
 Block 4: Fixed-Length Codes

The last block of this library includes the following fixed-length codes:

```
Repetition codes
Linear codes:
    Hamming
    Golay
    Reed-Muller
Cyclic codes:
    Polynomial codes
    Reed-Solomon
```


InformationCoding library:

Fixed-Length Codes

Repetition codes

The function "proberror" can be graphically represented by means of the "curve" function:

```
curve(x*1,0,1,100,col="black",lty=2,main="Bit probability error of the repetition code,
N=2n+1",lwd=2,ylab="Pe",xlab="p")
```

urve(proberror(x, 3), $, 1,200$, col $=$ "red",lwd=2,add=TRUE
curve(proberror ($\mathrm{x}, 5$), $0,1,200$, col=" $=$ green",lwd= $=2$, add=TRUE $)$
curve(proberror($\mathrm{x}, 11$), $, 1,200$, col $=$ "blue",lwd=2,add=TRUE
corner<-par()\$usr
legend(corner[3], corner[4], col=c("red","green","'blue"), pch=1, legend=paste("n=",c(1,2,5)))

InformationCoding library:

Fixed-Length Codes

Repetition codes
rep.code (s, N) : this codes the message s with a repetition code, therefore each symbol in s is repeated N times.
rep.decode (rec, N): this decodes the received message rec by taking the majority vote of each N consecutive bits.
proberror(prober, N): this function computes the bit probability error of a repetition code in a symmetric binary channel with error probability prober.

It is very easy to write some of these functions in R :

$$
\begin{aligned}
& \text { rep.code<-function(s,N) } \\
& \{\text { rep }(\mathrm{s}, \text { each }=\mathrm{N})\}
\end{aligned}
$$

InformationCoding library

Fixed-Length Codes, Linear Codes:

Hamming Codes

controlmatrix.Ham (r) : this builds the control matrix of the Hamming code with length 2^{r} - 1 and dimension $2^{r}-r-1$.
code.Ham (m, r) : this codes the message m with the Hamming code.
decode.Ham (rec,r): this decodes the message m with the Hamming code.
proberr.Ham (r) : this function computes the block error probability of the Hamming code.
codewords.Ham(r): list of the codewords of the Hamming code.

[1,]	0	0	0	0	0	0	0
[2,]	0	0	0	1	1	1	1
[3,]	0	0	1	0	0	1	1
[4,]	0	0	1	1	1	0	0
[5,]	0	1	0	0	1	0	1
[6,]	0	1	0	1	0	1	0
[7,]	0	1	1	0	1	1	0
[8,]	0	1	1	1	0	0	1
[9,]	1	0	0	0	1	1	0
[10,]	1	0	0	1	0	0	1
[11,]	1	0	1	0	1	0	1
[12,]	1	0	1	1	0	1	0
[13,]	1	1	0	0	0	1	1
[14,]	1	1	0	1	1	0	0
[15,]	1	1	1	0	0	0	0
[16,]	1	1	1	1	1	1	

InformationCoding library
 Fixed-Length Codes, Linear Codes:

 Golay Codes

 Golay Codes}genmatrix.Golay (r) : this builds the generator matrix of the Golay-24 code ($r=24$) or the Golay-23 code ($r=23$). code.Golay (\boldsymbol{m}, r) : this codes message m with the Golay code. decode.Golay $(r e c, r)$: this decodes message rec with the Golay code.

Reed Muller Codes

genmatrix.RM(r): this builds the generator matrix of the Reed Muller code with length 2^{r} and dimension $r+1$.
code.RM (\boldsymbol{m}, r) : this codes message m with the Golay code. decode.RM(rec, r): this decodes message rec with the Golay code.

Example of Reed Muller code

We suppose the following message formed by 10 vectors of size 4 :

Example of Reed Muller code

These are the matrices of Reed Muller generator of order 3 and 4 respectively:

genmatrix. $\mathrm{RM}(3)$							
1	1	1	1	1	1	1	1
0	1	0	1	0	1	0	1
0	0	1	1	0	0	1	1
0	0	0	0	1	1	1	1

$\gg 10$															
$>$	genmatrix.RM(4)														
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

We can simulate the transmission of the coded message with the function simulate.csb:

InformationCoding library
Fixed-Length Codes, Cyclic codes
Polynomial codes
These are based on the polynom R library Systematic coding of a cyclic polynomial code Syndrome decoding based on a reduced syndrome table

Reed Solomon Codes

These require the implementation of the elements of the Galois Field $\mathrm{GF}\left(2^{\mathrm{n}}\right)$, including the sum and product functions

The Reed Solomon codes work with blocks of n symbols: whereas in the previous codes K bits are coded as a codeword of size N bits, now K blocks of n bits are coded by N blocks of n bits.

Data Mining

The subject also includes an introduction to the main machinelearning models. The brief theoretical presentation is accompanied by some examples.

Neural Networks: multilayer perceptron with the nnet library.
CART: Classification and regression trees with the rpart library.
SVM: Support Vector Machines with the $s v m$ function in the e 1071 library.

Example of Reed Solomon Codes
 $$
\mathrm{n}=3, \mathrm{~K}=3, \mathrm{~N}=7
$$

We want to send this message, 3 elements of $\mathrm{GF}\left(2^{3}\right)$:

$$
\mathbf{1 1 0 1 1 0 1 1 1}
$$

which becomes a coded message, 7 elements of $\operatorname{GF}\left(2^{3}\right)$,: 001000111000110110111

Polynomgen.RS(N, K, n): generator polynomial for a Reed Solomon code with length N, dimension K, over a Galois Field $\operatorname{GF}\left(2^{\mathrm{n}}\right)$.
code.RS($\mathbf{m}, \mathbf{N}, \mathbf{K}, \mathbf{n}$): codes the message m with the Reed Solomon code.
decode.RS(rec, $\mathbf{N}, \mathbf{K}, \mathbf{n}$): decodes the message rec with the Reed Solomon code. It is based on the Berlekamp Massey algorithm.

