Riffle: an R Package for Nonmetric Clustering

Geoffrey B. Matthews and Robin A. Matthews

Western Washington University

Bellingham, WA, USA

- Dissimilar data types
 - Chemical
 - * ph, alkalinity
 - Physical
 - * temperature, percent canopy cover, sediment size, land use classes
 - Biological
 - * chlorophyll, sex (male, female, juvenile)
 - * rare species (counts 1-2)
 - * common species (counts 10,000-100,000)

Problems for Multivariate Data Analysis

- Censored data.
 - Tied ranks and reduced variance when "<5" \Rightarrow "5".
 - Systematic bias when omitted.
- Missing data.
 - Omit entire row when one variable column is missing?
- Noisy, "useless" parameters.
 - Measured anyway.
 - Can be unrelated to major patterns.

Riffle: an R Package for Nonmetric Clustering

Riffle

Matthews & Hearne, IEEE PAMI, 1991

A clustering algorithm:

• group similar points into clusters.

A nonmetric algorithm:

- uses only order statistics for continuous data
- can handle both continuous and categorical data together

Uses variables independently:

- ignores scattered missing values
- uses incommensurable variables without normalizing

Proportional Reduction in Error

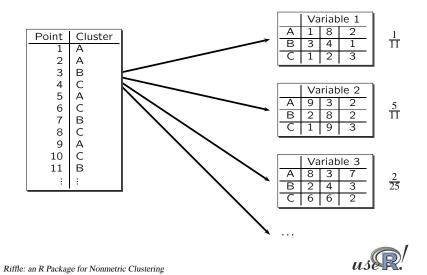
• Measuring Predictability for Categorical Variables

	red	green	blue	Errors	
A	5	8	2	7	
В	2	3	9	5 1	
С	8	1	0		
Totals	15	12	11	13	

Errors predicting (red, green, blue) a priori: 12+11=23

Errors predicting (red, green, blue) given (A, B, C): 7+5+1=13

Proportional reduction in error: $\frac{23-13}{23} = \frac{10}{23}$


 \bullet More meaningful and robust than, e.g., χ^2

Riffle: an R Package for Nonmetric Clustering

Clustering with categorical variables

• Assign clusters to maximize predictability over other variables.

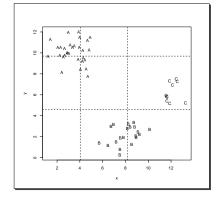
Proportional Reduction in Error

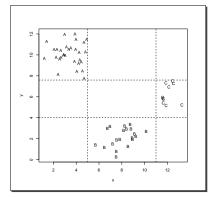
Independent variables:

	red	green	blue	Errors
A	6	3	9	9
В	4	2	6	6
С	2	1	3	3
Totals	12	6	18	18

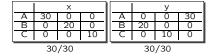
Minimum: 0% reduction

Perfectly predictable variables:


	red	green	blue	Errors
Α	12	0	0	0
В	0	0	18	0
С	0	6	0	0
Totals	12	6	18	0

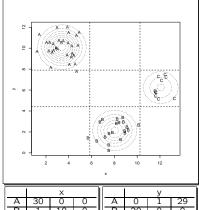

Maximum: 100% reduction

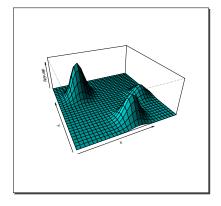
Riffle: an R Package for Nonmetric Clustering

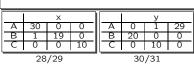

Handling ordered variables

• Cuts adjusted to maximize predictability of clusters

	X				У		
Α	20	10	0	Α	0	10	20
В	0	10	10	В	20	0	0
С	0	0	10	С	0	10	0
20/40			30/40				



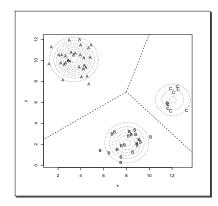


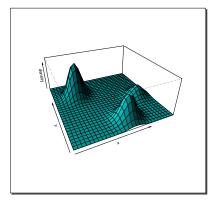

Riffle: an R Package for Nonmetric Clustering

Cutting Gaussian variables

- Generate independent Gaussians from cluster statistics μ_i, σ_i
- Cut where max likelihood changes from one to another.

Riffle: an R Package for Nonmetric Clustering




Essential Algorithm

```
variables <- quantile.cuts(data)</pre>
clusters <- seed.clusters(variables)</pre>
score <- reduction.in.error(variables, clusters)</pre>
while (improving(score)) {
  variables <- best.cuts(variables, clusters)</pre>
  clusters <- best.clusters(variables, clusters)</pre>
  score <- reduction.in.error(variables, clusters)</pre>
}
return (clusters, variables)
```

Alternative handling of Gaussian variables (EM)

- Assign to most likely group, instead of max predictability.
- Not used in Riffle.

Riffle: an R Package for Nonmetric Clustering

Getting things started

To find initial cuts for variables:

- Use quantiles for cut points.
- Use quantiles for μ_i , overall σ for σ_i .

To find initial clusters, given cut variables:

- Select one point randomly as seed.
- Find other seeds by selecting points as different as possible.
- Assign each seed to a different cluster.
- Assign all other points to cluster of most similar seed.

Embellishments

- Each variable is dealt with independently.
- Each variable has a score (predictability vs. cluster).
- Use score to eliminate variables, or rank them in importance.
- We use this to handle the curse of dimensionality and find a small set of critical variables.
- Data reduction

Riffle: an R Package for Nonmetric Clustering

Conclusion

- We have used **Riffle** successfully for over 10 years for ecological and toxicological data analysis.
- Riffle can cluster using incommensurate variables.
- Riffle handles censored data and missing data with few assumptions.
- Riffle can reduce complexity in highly multivariate datasets.
- R package available 2006.

Data Exploration vs. Confirmation

- Clustering in general is exploratory.
- Clustering data with known groups:
 - correlation between clusters and groups measures significance.
 - identifies important variables as the ones with high predictibility.
 - determine not only significance of effect,
 but also which variables are affected the most.
 - we have used this to chart seasonal effects.

Riffle: an R Package for Nonmetric Clustering

