What is ecological inference (EI)?

eiPack: Tools for $R \times C$ Ecological Inference and Goal: infer individual level behavior from aggregate data **Higher-Dimension Data Management** • Unit of analysis: contingency table with observed marginals Ryan T. Moore Michael Kellermann Olivia Lau col col₃ col N_{11i} N_{12i} N_{13i} $N_{1.i}$ row₁ Department of Government $N_{2.i}$ N_{21i} N_{22i} N_{23i} row₂ Institute for Quantitative Social Science $N_{3\cdot i}$ Harvard University N_{31i} N_{32i} N_{33i} row₃ Ni $N_{.1i}$ $N_{.2i}$ N_{3i} Vienna, Austria 16 June 2006 Olivia Lau, Ryan T. Moore, Michael Kellermann eiPack: R × C Ecological Inference and Data Management Olivia Lau, Ryan T. Moore, Michael Kellermann eiPack: R × C Ecological Inference and Data Managemer What is ecological inference (EI)? eiPack

- Goal: infer individual level behavior from aggregate data
- Unit of analysis: contingency table with observed marginals

	col ₁	col ₂	col ₃	
row ₁	N _{11i}	N _{12i}	N _{13i}	N _{1·i}
row ₂	N _{21i}	N _{22i}	N _{23i}	$N_{2\cdot i}$
row ₃	N _{31i}	N _{32i}	N _{33i}	N _{3·i}
	N. _{1i}	N. _{2i}	N. _{3i}	Ni

 eiPack methods estimate unobserved internal cells (or functions thereof)

- Other packages focus on 2 × 2 inference (e.g., eco, MCMCpack)
- eiPack: $R \times C$ inference

eiPack

eiPack

Other packages focus on 2 × 2 inference Other packages focus on 2 × 2 inference (e.g., eco, MCMCpack) (e.g., eco, MCMCpack) • eiPack: $R \times C$ inference • eiPack: $R \times C$ inference eiPack methods: • eiPack methods: Method of bounds Method of bounds Ecological regression Ecological regression Multinomial-Dirichlet model Multinomial-Dirichlet model • eiPack data: senc Individual level party affiliation Black, White, and Native American voters 8 counties (212 precincts) in SE North Carolina Cell counts known Olivia Lau, Ryan T. Moore, Michael Kellermann Olivia Lau, Ryan T. Moore, Michael Kellermann eiPack: $\mathsf{R} imes \mathsf{C}$ Ecological Inference and Data Management eiPack: R × C Ecological Inference and Data Managemer eiPack eiPack

The models implemented in eiPack share:

The models implemented in eiPack share:

- A common input syntax of the form: cbind(coll, ..., colC) ~ cbind(row1, ...,rowR)
- Functions to calculate proportions of some subset of columns
- Appropriate print, summary, and plot functions

(4 伊) (4 日) (4 日)

Method of bounds

Method of bounds

- Quantity of interest: proportion of row members in each column for each unit
- Observed row and column marginals determine upper and lower bounds

- Quantity of interest: proportion of row members in each column for each unit
- Observed row and column marginals determine upper and lower bounds
- Row thresholds implemented for *extreme* case analysis

- Quantity of interest: proportion of row members in each column for each unit
- Observed row and column marginals determine upper and lower bounds
- Row thresholds implemented for *extreme* case analysis
- Output:
 - \$white.dem
 - lower upper 18 0.519 0.559 25 0.450 0.469
 - 28 0.392 0.487

・ロト ・ 同ト ・ ヨト ・ ヨト

3

ヘロト 人間ト くほト くほう

Ecological regression

- Express data as proportions of row totals
- Regress each column on all row proportions (C regressions)
- Coefficients estimate cell proportions
- eiPack: freq. and Bayesian regression

- Express data as proportions of row totals
- Regress each column on all row proportions (C regressions)
- Coefficients estimate cell proportions
- eiPack: freq. and Bayesian regression
- lambda functions calculate shares of a subset of columns – e.g. "among Blacks, Dem. share of 2-party registration"

Ecological regression

Multinomial-Dirichlet (MD) model

- Express data as counts
- Fit hierarchical Bayesian model
 - Level 1: column marginals \sim *Multinomial*, \perp across units
 - Level 2: rows of cell fractions \sim Dirichlet, $\perp\!\!\!\perp$ across rows and units
 - Level 3: Dirichlet parameters \sim Gamma, i.i.d.
- lambda and density.plot functions

< E .

Data Management

Data Management

 Reasonable-sized problems produce unreasonable amounts of data

- Reasonable-sized problems produce unreasonable amounts of data
- E.g., a model for voting in Ohio includes
 - 11000 precincts
 - 3 racial groups
 - 4 party options

eiPack: R × C Ecological Inference and Data Managem

user.

eiPack: R × C Ecological Inference and Data Management

Olivia Lau, Ryan T. Moore, Michael Kellermann Data Management

- Reasonable-sized problems produce unreasonable amounts of data
- E.g., a model for voting in Ohio includes
 - 11000 precincts
 - 3 racial groups
 - 4 party options
- 1000 iterations yields about 1.3 × 10⁸ parameter draws
- Draws occupy \approx 1GB of RAM; probably not enough iterations

- Reasonable-sized problems produce unreasonable amounts of data
- E.g., a model for voting in Ohio includes
 - 11000 precincts
 - 3 racial groups

Olivia Lau, Ryan T. Moore, Michael Kellermann

Data Management

- 4 party options
- 1000 iterations yields about 1.3×10^8 parameter draws
- Draws occupy \approx 1GB of RAM; probably not enough iterations
- eiPack allows users to write chains to disk, or discard chains not of interest

Visit our poster for more!

Olivia Lau, Ryan T. Moore, Michael Kellermann