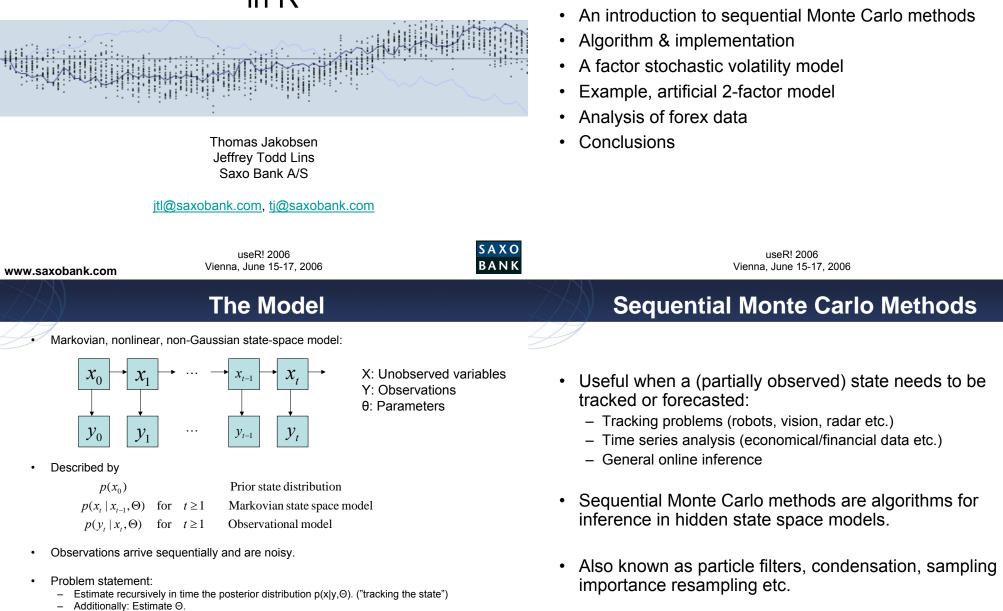
Overview

Sequential Monte Carlo Methods in R



The model

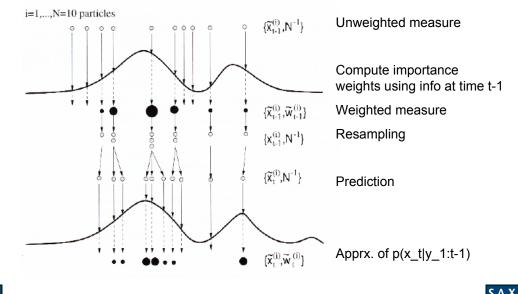
٠

BANK

Sequential Monte Carlo Methods

A bootstrap approach (from [1])

- SMC methods: Basically a nonlinear, non-Gaussian version of the Kalman filter (but approximate - not closed form)
- The posterior at time t-1 is represented by a set of weighted particles. The particles are drawn i.i.d. and recursively updated.
- Next slide: Illustration of update



useR! 2006	SAXO	useR! 2006	S A X
Vienna, June 15-17, 2006	BANK	Vienna, June 15-17, 2006	B A N

Comb. Parameter and State Estimation

Algorithm

Liu & West, Combined Parameter and State Estimation:

(auxiliary particle filter with state estimation)

- Often the parameters are known (or obtained through separate analysis).
- However: If parameters are unknown, how to carry out combined estimation of x and Θ ?
- Liu & West describe a simple approach. ٠

Input : Monte Carlo sample $(x_t^{(j)}, \Theta_t^{(j)})$ and weights $w_t^{(j)}$, j = 1, ..., N. 1. For j = 1, ..., N: $\mu_{t+1}^{(j)} = E(x_{t+1} | x_t^{(j)}, \Theta_t^{(j)})$ 2. Sample an integer $k \in \{1, ..., N\}$ with probability $g_{t+1}^{(j)} \propto W_t^{(j)} p(y_{t+1} \mid \mu_{t+1}^{(j)}, m_t^{(j)})$ 3. Sample $\Theta_{t+1}^{(k)} \sim N(\cdot | m_t^{(k)}, h^2 V_t)$. 4. Sample $x_{t}^{(k)} \sim p(\cdot | x_{t}^{(k)}, \Theta_{t+1}^{(k)})$. 5. Evaluate weight : $w_{t+1}^{(k)} \propto \frac{p(y_{t+1} | x_{t+1}^{(k)}, \Theta_{t+1}^{(k)})}{p(y_{t+1} | \mu_{t+1}^{(k)}, m_{t}^{(k)})}$ Repeat 2.-5. until approximation is sufficiently accurate.

$$\begin{split} \mathbf{m}_{t}^{(j)} &= a \Theta_{t}^{(j)} + (1-a) \overline{\Theta}_{t} \\ \overline{\Theta}_{t}, V_{t} &: \text{Posterior mean and variance matrix from } \Theta_{t}^{(j)} \text{and weights } w_{t}^{(j)} \\ & \text{useR! 2006} \\ \text{Vienna, June 15-17, 2006} \end{split}$$

 \sim (i)

NK

R Implementation

- To describe the model, the user supplies his own • functions as arguments to main SMC function (together with Y and [hyper]parameters).
- R language very suitable for implementation, especially because of
 - Vectorization
 - Built-in statistical functions _
 - The possibility of supplying user-defined functions as arguments
 - Ease of visualization and interaction
- Quite efficient but still computationally heavy. ٠
 - For large datasets, a C/C++ optimization is needed (we already developed a faster C# version).

(similar to the model of Liu & West) ٠

$y_t = \boldsymbol{\alpha}_t + \mathbf{X}\mathbf{f}_t + \boldsymbol{\varepsilon}_t$	Observations
$\mathbf{\alpha}_{t}$	Local series level
Χ	Factor loadings matrix
$\mathbf{f}_t \sim N(\cdot 0, \mathbf{H}_t)$	Factors
$\mathbf{H}_{t} = \operatorname{diag}(h_{t1}, \mathbf{K}, h_{tk})$	Factor variances
$h_{ti} = \exp(\lambda_{ti})$	
$\boldsymbol{\lambda}_t = \boldsymbol{\mu} + \boldsymbol{\Phi}(\boldsymbol{\lambda}_{t-1} - \boldsymbol{\mu}) + \boldsymbol{\gamma}_t$	Log factor variances
$\gamma_t \sim N(\cdot 0, \mathbf{U})$	Innovations
U	Innovations variance matrix
$\boldsymbol{\varepsilon}_{t} \sim N(\cdot \boldsymbol{0}, \boldsymbol{\Psi})$	Idiosyncratic noise variances
$\Psi = \text{diag}(\Psi_1,, \Psi_k)$	

SAXO BANK

SAXO

BANK

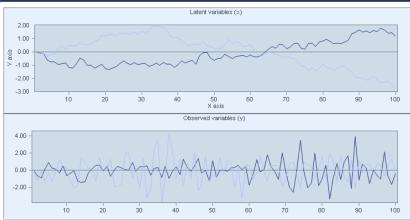


5 A X O

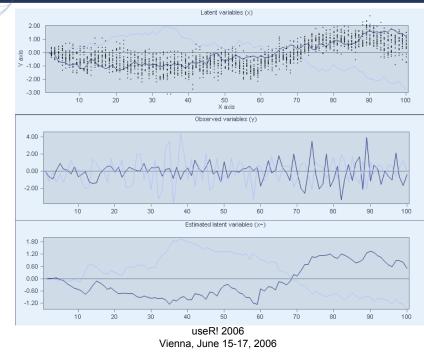
BANK

Example, artificial 2-factor model

useR! 2006



Example, artificial 2-factor model



Example, FX data

Model exchange rates with a factor stochastic volatility • model.

useR! 2006

Vienna, June 15-17, 2006

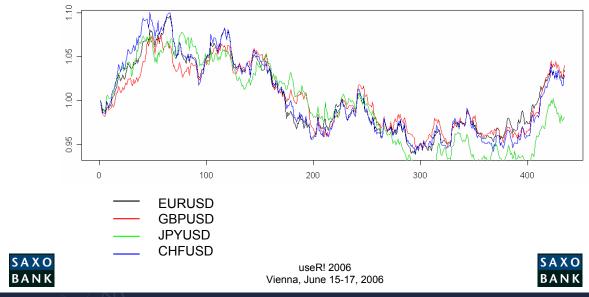
- Per-minute data •
 - EURUSD, GBPUSD, JPYUSD, CHFUSD.
- The log return for currency *i* on day *t* is given by ٠

$$y_{ti} = \log(\frac{S_{ti}}{S_{t-1\,i}})$$

where *s* is the spot rate in US dollars.

FX data, example

Spot rates. 434 bank days of data. Index 1.0 at 2004-10-01.



FX data, results

40

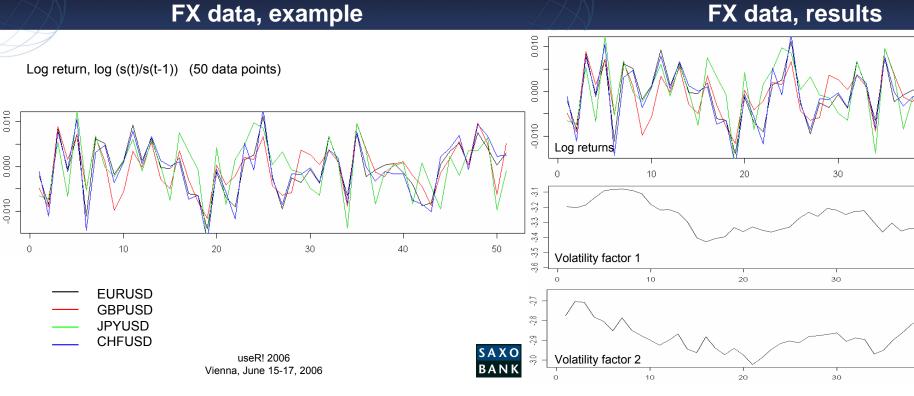
40

40

50

50

50



Conclusion

References

- R is flexible and powerful enough for implementing efficient particle filters
- For large datasets, however, an optimized C/C++ version is really needed (because of the heavy computational burden).
- Combined parameter and state estimation can be useful but also unstable when there are too many parameters
 Alternative: De concrete/offline estimation of parameters
 - Alternative: Do separate/offline estimation of parameters (using, e.g., full MCMC)

useR! 2006

Vienna, June 15-17, 2006

Questions?

• Package may be forthcoming

- [1] A. Doucet, N. de Freitas and N. Gordon, editors, Sequential Monte Carlo Methods in Practice, Springer, 2001.
- [2] Liu and West: Combined Parameter and State Estimation in Simulation-Based Filtering, pp. 197-223, in [1].

useR! 2006 Vienna, June 15-17, 2006

- Thanks for your attention.
- Emails:
- » jtl@saxobank.com
- » tj@saxobank.com
- Web site:
 - » www.saxobank.com

SAXO

BANK