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Overview

• The model
• An introduction to sequential Monte Carlo methods
• Algorithm & implementation
• A factor stochastic volatility model
• Example, artificial 2-factor model 
• Analysis of forex data
• Conclusions
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The Model
• Markovian, nonlinear, non-Gaussian state-space model:

• Described by

• Observations arrive sequentially and are noisy.

• Problem statement: 
– Estimate recursively in time the posterior distribution p(x|y,Θ). (”tracking the state”)
– Additionally: Estimate Θ.
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Sequential Monte Carlo Methods

• Useful when a (partially observed) state needs to be
tracked or forecasted:
– Tracking problems (robots, vision, radar etc.)
– Time series analysis (economical/financial data etc.)
– General online inference

• Sequential Monte Carlo methods are algorithms for 
inference in hidden state space models. 

• Also known as particle filters, condensation, sampling 
importance resampling etc.
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Sequential Monte Carlo Methods

• SMC methods: Basically a nonlinear, non-Gaussian
version of the Kalman filter (but approximate – not 
closed form)

• The posterior at time t-1 is represented by a set of
weighted particles. The particles are drawn i.i.d. and 
recursively updated.

• Next slide: Illustration of update
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A bootstrap approach (from [1])

Unweighted measure

Compute importance
weights using info at time t-1

Weighted measure

Resampling

Prediction

Apprx. of p(x_t|y_1:t-1)
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Comb. Parameter and State Estimation

• Often the parameters are known (or obtained through
separate analysis).

• However: If parameters are unknown, how to carry out 
combined estimation of x and Θ?

• Liu & West describe a simple approach.
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Algorithm
• Liu & West, Combined Parameter and State Estimation:

(auxiliary particle filter with state estimation)
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R Implementation

• To describe the model, the user supplies his own
functions as arguments to main SMC function (together
with Y and [hyper]parameters).

• R language very suitable for implementation, 
especially because of
– Vectorization
– Built-in statistical functions
– The possibility of supplying user-defined functions as arguments
– Ease of visualization and interaction

• Quite efficient but still computationally heavy. 
– For large datasets, a C/C++ optimization is needed

(we already developed a faster C# version).
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Factor Stochastic Volatility Model

• (similar to the model of Liu & West)
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Example, artificial 2-factor model
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Example, artificial 2-factor model
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Example, FX data

• Model exchange rates with a factor stochastic volatility
model.

• Per-minute data
– EURUSD, GBPUSD, JPYUSD, CHFUSD.

• The log return for currency i on day t is given by

where s is the spot rate in US dollars.
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FX data, example

Spot rates. 434 bank days of data. Index 1.0 at 2004-10-01.

EURUSD
GBPUSD
JPYUSD
CHFUSD
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FX data, example

Log return, log (s(t)/s(t-1))   (50 data points)

EURUSD
GBPUSD
JPYUSD
CHFUSD
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FX data, results

Volatility factor 1

Log returns

Volatility factor 2
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Conclusion

• R is flexible and powerful enough for implementing
efficient particle filters

• For large datasets, however, an optimized C/C++ 
version is really needed (because of the heavy 
computational burden).

• Combined parameter and state estimation can be useful
but also unstable when there are too many parameters
– Alternative: Do separate/offline estimation of parameters (using, 

e.g., full MCMC)

• Package may be forthcoming
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Questions?

• Thanks for your attention.

• Emails: 
» jtl@saxobank.com
» tj@saxobank.com

• Web site:
» www.saxobank.com


