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Different ways of simulating BM paths

simulating increments B(t)− B(s) ∼ N(0, t − s)

limit of the random walk Sn =
∑

Xi , with P(Xi = ±1) = 1/2(
S[nt]√

n
, t ≥ 0

)
d→ (B(t), t ≥ 0)

These implies simulation on a grid and between grid points BM
path is linearly interpolated
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continuous line n = 10, dashed line n = 100, dotted line n = 1000.

Pathwise approximations

Karhunen-Loève / Kac-Siegert decomposition

B(t , ω) =
∞∑

i=0

Ziφi(t), 0 ≤ t ≤ T

with

φi(t) =
2
√

2T
(2i + 1)π

sin
(

(2i + 1)πt
2T

)
φi a basis of orthogonal functions and Zi i.i.d. N(0, 1)

This approximation might be too smooth
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n = 10 (continuous line), n = 50 (dashed line) and n = 100 terms

IFS-M operator

The IFS-M operator is contractive operatore defined as

T (g(x)) =
N∑

k=1

{
αk · g

(
x − ak

sk

)
+ βk

}
where (αk , βk , ak ) can be determined as the solution of a
contrained Quadratic Problem given some choice of (ak , sk )’s

∆2 = ||g − Tg||22 = min
α,β

under the constraint

N∑
k=1

ck (αk‖g‖1 + βk ) ≤ ‖g‖1

∆2 can be rewritten as a quadratic form

∆2 = xT Ax + bT x + c

where x = (α1, . . . αk , β1, . . . , βk ). If g = BM then

ai,i = c
∫ 1

0
B2(t)dt

aN+i,N+i = si

ai,N+i = c
∫ 1

0
B(t)dt

bi = −2
∫ 1

0
B(t)B((t − ai)/si)dt

bN+i = −2
∫ ai+si

ai

B(t)dt

with c =
∫ 1

0 |B(t)|dt
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Theorem (Self-affine trajectories)

Let (αk , βk ) be the solution of ∆2 = minα.β then the fixed point
B̃(t) of the operator T satisfies the self affine property

B̃(wi(t + h))− B̃(wi(t)) = αi(B̃(t + h)− B̃(t))

where wi(x) = aix + si

Which means that the trajectory is made of rescaled copies of
itself and here comes the fractal nature of the approximation.

The IFS package

IFS’s can be built on distribution functions as well (DSC 2003)
and the ifs package include both families of operators (IFS-p
and IFS-M)
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