Outline

Flexible, optimal matching for observational studies

Ben Hansen
University of Michigan

15 June 2006

Existing site		
	date	capacity
A	2.3	660
B	3.0	660
C	3.4	420
D	3.4	130
E	3.9	650
F	5.9	430
G	5.1	420

"date" is date of construction, in years after 1965; "capacity" is net capacity of the power plant, in MWe

New site		
date		capacity
H	3.6	290
I	2.3	660
J	3.0	660
K	2.9	110
L	3.2	420
M	3.4	60
N	3.3	390
O	3.6	160
P	3.8	390
Q	3.4	130
R	3.9	650
S	3.9	450
T	3.4	380
U	4.5	440
V	4.2	690
W	3.8	510
X	4.7	390
Y	5.4	140
Z	6.1	730

Optimal matching of two groups
Comparing nuclear plants: an illustration

Generalizations of pair matching

The R implementation

Existing site			New site			
	date	capacity		date	capacity	
A	2.3	660	H	3.6 3	290	
B	3.0	660	J	3.0	660	
C	3.4	420	K	2.9	110	
D	3.4	130	L	3.2	420	
E	3.9	650	M	3.4	60	
F	5.9	430	O	3.6	160	
G	5.1	420	P	3.8	390	
	ample: 1:2 matching by a ditional, greedy algorithm.			Q	3.4	130
				R	3.9 3.9	650 450
				T	3.4	380
				v	4.5	440 690
				w	3.8	510
te" is date of construction, in "r after 1965. "capacity" is net ca			x	4.7	390	
			Y	5.4	$\begin{array}{r}140 \\ 730 \\ \hline\end{array}$	pacity of the power plant, in MWe above 400.

Existing site			New site		
	date	capacity		date	capacity
A	2.3	660	H	3.6 2.3	290 660
B	3.0	660		3.0	660
C	3.4	420	K	2.9	110
D	3.4	130		3.2	420
E	3.9	650	N	3.4 3.3	60 390
F	5.9	430	O	3.6	160
G	5.1	420	P	3.8	390
xample: 1:2 matching by a ditional, greedy algorithm.			R ${ }_{\text {R }}$	3.4 3.9	130 650
			s	3.9	450
			T	3.4	380
			U	4.5	440
			v	4.2	690
			w	3.8	510
te" is date of construction, in ars after 1965; "capacity" is net ca-			x	4.7	390
			z	5.4 6.1	140 730

Example: 1:2 matching by a traditional, greedy algorithm.
"date" is date of construction, in years after 1965; "capacity" is net capacity of the power plant, in MWe above 400.

Existing site			New site		
	date	capacity		date	capacity
A	2.3	660	${ }^{\text {H }}$	3.6	290
B	3.0	660		3.0 3.0	660
C	3.4	420	K	2.9	110
D	3.4	130		3.2	420
E	3.9	650		3.4 3.3	60 390
F	5.9	430	O	3.6	160
G	5.1	420		3.8	390
			R	3.4 3.9	130
				3.9	450
mple	1:2	matching by a		3.4	380
tion	, gre	dy algorithm.	U	4.5	440
			w	3.8	510
is	te of	construction, in	X	4.7	390
			Y	5.4	140
		city is net	Z	6.1	730

Existing site			New site		
	date	capacity		date	capacity
A B C D E F G	2.3	660	H	3.6 2.3	290 660
	3.0	660		3.0	660
	3.4	420	K	2.9	110
	3.4	130		3.2	420
	3.9	650		3.4 3.3	60 390
	5.9	430	0	3.6	160
	5.1	420		3.8	390
ample: 1:2 matching by a ditional, greedy algorithm.			Q	3.4	130
			S	3.9	450
				3.4	380
			U	4.5	440
te" is date of			w	3.8	510
		construction,	x	4.7	390
			Y	5.4	140
			z	6.1	730

 pacity of the power plant, in MWe above 400.
 pacity of the power plant, in MWe above 400.

New and refurbished nuclear plants: discrepancies in capacity and year of construction

Exist- ing	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
A	28	0	3	22	14	30	17	28	26	28	20	22	23	26	21	18	34	40	28
B	24	3	0	22	10	27	14	26	24	24	16	19	20	23	18	16	31	37	25
C	10	18	14	18	4	12	6	11	9	10	14	12	6	14	22	10	16	22	28
D	7	28	24	8	14	2	10	6	12	0	24	22	4	24	32	20	18	16	38
E	17	20	16	32	18	26	20	18	12	24	0	2	20	6	8	4	14	20	14
F	20	31	28	35	20	29	22	20	14	26	12	9	22	5	15	12	9	11	12
G	14	32	29	30	18	24	17	16	10	22	12	10	17	6	16	14	4	8	17

 pacity of the power plant in MW above 400.

	Existing site		New site	
	date	capacity	date	capacity
A	2.3	660	3.6	290
B	3.0	660	2.3 3.0	660
C	3.4	420	2.9	110
D	3.4	130	3.2	420
E	3.9	650	3.4 3.3	60 390
F	5.9	430	3.6	160
G	5.1	420	3.8	390
		N	3.4	130
			3.9	650
			3.9	450
Optimal	G	dy matching	3.4	380
			4.5	440
			4.2	690
By evalua	ng po	ntial matches all	3.8	510
together r	er th	sequentially, op-	4.7	390
timal ma		e lines) reduces	5.4	140
timal mat		lines) reduces	6.1	730

Introducing restrictions on who can be matched to whom: calipers

In the nuclear plants example, suppose we choose to insist upon a caliper of three years in the date of construction. This would forbid five potential matches, indicated below in red.

Exist- ing	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
A	28	0	3	22	14	30	17	28	26	28	20	22	23	26	21	18	34	40	28
B	24	3	0	22	10	27	14	26	24	24	16	19	20	23	18	16	31	37	25
C	10	18	14	18	4	12	6	11	9	10	14	12	6	14	22	10	16	22	28
D	7	28	24	8	14	2	10	6	12	0	24	22	4	24	32	20	18	16	38
E	17	20	16	32	18	26	20	18	12	24	0	2	20	6	8	4	14	20	14
F	20	31	28	35	20	29	22	20	14	26	12	9	22	5	15	12	9	11	12
G	14	32	29	30	18	24	17	16	10	22	12	10	17	6	16	14	4	8	17

Outline

Introducing restrictions on who can be matched to whom: calipers

With optmatch, matches are forbidden by placing ∞ 's in the distance matrix.

Exist- ing	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
A	28	0	3	22	14	30	17	28	26	28	20	22	23	26	21	18	34	lnf	Inf
B	24	3	0	22	10	27	14	26	24	24	16	19	20	23	18	16	31	37	Inf
C	10	18	14	18	4	12	6	11	9	10	14	12	6	14	22	10	16	22	28
D	7	28	24	8	14	2	10	6	12	0	24	22	4	24	32	20	18	16	38
E	17	20	16	32	18	26	20	18	12	24	0	2	20	6	8	4	14	20	14
F	20	Inf	28	Inf	20	29	22	20	14	26	12	9	22	5	15	12	9	11	12
G	14	32	29	30	18	24	17	16	10	22	12	10	17	6	16	14	4	8	17

Example \# 2: Gender equity study for research scientists ${ }^{1}$

Women and men scientists are to be matched on grant funding.

Women		Men	
Subject	$\log _{10}$ (Grant)	Subject	$\log _{10}$ (Grant)
A	5.7	V	5.5
B	4.0	W	5.3
C	3.4	X	4.9
D	3.1	Y	4.9
		Z	3.9

[^0]
Full Matching ${ }^{2}$ the Gender Equity Sample

Women		Men	
Subject	$\log _{10}($ Grant $)$	Subject	$\log _{10}$ (Grant)
A	5.7	V	5.5
B	4.0	W	5.3
C	3.4	X	4.9
D	3.1	Y	4.9
		Z	3.9

- Similar to matching with replacement, but creates disjoint matched sets — better for tests \& CIs.
- In contrast to pair matching, it finds matches for everyone with a suitable counterpart.
- In contrast to multiple controls matching, it doesn't force poor matches
${ }^{2}$ (Rosenbaum, 1991; Hansen and Klopfer, 2005)
Full Matching ${ }^{2}$ the Gender Equity Sample

Women		Men	
Subject	$\log _{10}($ Grant $)$	Subject	$\log _{10}$ (Grant)
A	5.7	V	5.5
B	4.0	V	5.3
C	3.4	Y	4.9
D	3.1		4.9
			3.9

- Similar to matching with replacement, but creates disjoint matched sets - better for tests \& Cls.
- In contrast to pair matching, it finds matches for everyone with a suitable counterpart.
- In contrast to multiple controls matching, it doesn't force poor matches.

[^1]
Full Matching² the Gender Equity Sample

Women		Men	
Subject	$\log _{10}($ Grant $)$	Subject	$\log _{10}$ (Grant)
A	5.7	W	5.5
B	4.0	5.3	
C	3.4	Y	4.9
D	3.1		4.9
			3.9

- Similar to matching with replacement, but creates disjoint matched sets - better for tests \& Cls.
- In contrast to pair matching, it finds matches for everyone with a suitable counterpart.
- In contrast to multiple controls matching, it doesn't force poor matches

[^2]Full Matching ${ }^{2}$ the Gender Equity Sample

Women		Men	
Subject	$\log _{10}($ Grant $)$	Subject	$\log _{10}$ (Grant)
A	5.7	W	5.5
B	4.0		W
C	3.4	4.9	
D	3.1		Y

- Similar to matching with replacement, but creates disjoint matched sets - better for tests \& Cls.
- In contrast to pair matching, it finds matches for everyone with a suitable counterpart.
- In contrast to multiple controls matching, it doesn't force poor matches.
- In optmatch, can be combined with structural restrictions.

[^3]
Outline

Optimal matching of two groups
Comparing nuclear plants: an illustration

Generalizations of pair matching

The R implementation

Arguments to fullmatch()

distance The argument demanding most attention from the user, b/c it defines "good" matches and because very large distance matrices can tax R's memory limits. both of these efforts.
min.controls, max.controls In propensity matching, can be important for efficiency - see Hansen (2004), Augursky and Kluve (2004)
omit.fraction for use in matched sampling (as opposed to matching all or most of a sample). Not needed for getting rid of subjects without suitable potential matches. If you're not specifically out to reduce the size of the control group, can be ignored.

Under the hood

Full matching via network flows ${ }^{3}$

[^4]
Arguments to fullmatch ()

distance The argument demanding most attention from the user, b/c it defines "good" matches and because very large distance matrices can tax R's memory limits. A new helper function, makedist (), eases both of these efforts.
min.controls, max.controls In propensity matching, can be important for efficiency — see Hansen (2004),
Augursky and Kluve (2004).
omit.fraction for use in matched sampling (as opposed to matching all or most of a sample). Not needed for getting rid of subjects without suitable potential matches. If you're not specifically out to reduce the size of the control group, can be ignored.

Arguments to fullmatch()

distance The argument demanding most attention from the user, b/c it defines "good" matches and because very large distance matrices can tax R's memory limits. A new helper function, makedist (), eases both of these efforts.
min.controls, max.controls In propensity matching, can be important for efficiency - see Hansen (2004), Augursky and Kluve (2004).
omit.fraction for use in matched sampling (as opposed to matching all or most of a sample). Not needed for getting rid of subjects without suitable potential matches. If you're not specifically out to reduce the size of the control group, can be ignored.

Summary

- With optmatch, R offers the most comprehensive optimal matching implementation for statistics.
- fullmatch () solves optimally such traditional problems as matched sampling, pair matching, and matching with k controls.
- fullmatch () can also solve matching problems flexibly, and far more effectively, by way of full matching, with or without structural restrictions (Hansen and Klopfer, 2005; Hansen, 2004).
- The effort required to code optimal and full matching algorithms seems to have dissuaded their widespread use Now that l've made that effort, perhaps this situation can change! :)

Summary

- With optmatch, R offers the most comprehensive optimal matching implementation for statistics.
fullmatch () solves optimally such traditional problems as matched sampling, pair matching, and matching with k controls
fullmatch () can also solve matching problems flexibly, and far more effectively, by way of full matching, with or without structural restrictions (Hansen and Klopfer, 2005; Hansen, 2004)
- The effort required to code optimal and full matching algorithms seems to have dissuaded their widespread use Now that l've made that effort, perhaps this situation can change! :)

Summary

- With optmatch, R offers the most comprehensive optimal matching implementation for statistics.
- fullmatch () solves optimally such traditional problems as matched sampling, pair matching, and matching with k controls.
- fullmatch () can also solve matching problems flexibly, and far more effectively, by way of full matching, with or without structural restrictions (Hansen and Klopfer, 2005; Hansen, 2004).

The effort required to code optimal and full matching algorithms seems to have dissuaded their widespread use. Now that l've made that effort, perhaps this situation can change! :)

Summary

- With optmatch, R offers the most comprehensive optimal matching implementation for statistics.
- fullmatch () solves optimally such traditional problems as matched sampling, pair matching, and matching with k controls.
- fullmatch () can also solve matching problems flexibly, and far more effectively, by way of full matching, with or without structural restrictions (Hansen and Klopfer, 2005; Hansen, 2004).
- The effort required to code optimal and full matching algorithms seems to have dissuaded their widespread use. Now that l've made that effort, perhaps this situation can change! :)

Example with propensity scores and stratification prior to matching

```
```

>nuclear\$pscore <- glm(pr~.-cost,

```
```

>nuclear\$pscore <- glm(pr~.-cost,

+ family=binomial(),data=nuclear)\$linear.predictors
+ family=binomial(),data=nuclear)\$linear.predictors
> pscorediffs <- function(trtvar,data) {
> pscorediffs <- function(trtvar,data) {
+ pscr <- data[names(trtvar), 'pscore']
+ pscr <- data[names(trtvar), 'pscore']
+ abs(outer(pscr[trtvar],pscr[!trtvar], '-'))
+ abs(outer(pscr[trtvar],pscr[!trtvar], '-'))
+ }
+ }
> psd2 <- makedist(pr~pt, nuclear, pscorediffs)
> psd2 <- makedist(pr~pt, nuclear, pscorediffs)
fullmatch(psd2)
fullmatch(psd2)
> fullmatch(psd2, min.controls=1, max.controls=3)

```
```

> fullmatch(psd2, min.controls=1, max.controls=3)

```
```

Jake Bowers' and my RItools package provides
diagnostics.

Example with propensity scores and stratification prior to matching

```
>nuclear$pscore <- glm(pr~.-cost,
+ family=binomial(), data=nuclear)$linear.predictors
> pscorediffs <- function(trtvar,data) {
+ pscr <- data[names(trtvar), 'pscore']
+ abs(outer(pscr[trtvar],pscr[!trtvar], '-'))
+ }
psd2 <- makedist(pr~pt, nuclear, pscorediffs)
fullmatch(psd2)
> fullmatch(psd2, min.controls=1, max.controls=3)
fullmatch(psd2, min=1, max=c('0'=3, '1'=2))
```

Jake Bowers' and my RItools package provides diagnostics.

Example with propensity scores and stratification prior to matching
Jake Bowers' and my RItools package provides
diagnostics.

```
>nuclear$pscore <- glm(pr~.-cost,
```

>nuclear\$pscore <- glm(pr~.-cost,

+ family=binomial(), data=nuclear)\$linear.predictors
+ family=binomial(), data=nuclear)\$linear.predictors
> pscorediffs <- function(trtvar,data) {
> pscorediffs <- function(trtvar,data) {
+ pscr <- data[names(trtvar), 'pscore']
+ pscr <- data[names(trtvar), 'pscore']
+ abs(outer(pscr[trtvar],pscr[!trtvar], '-'))
+ abs(outer(pscr[trtvar],pscr[!trtvar], '-'))
+ }
+ }
> psd2 <- makedist(pr~pt, nuclear, pscorediffs)
> psd2 <- makedist(pr~pt, nuclear, pscorediffs)
> fullmatch(psd2)
> fullmatch(psd2)
Eullmatch(psd2, min.controls=1, max. controls=3)

```

\section*{Example with propensity scores and stratification prior to matching}
```

>nuclear\$pscore <- glm(pr~.-cost,

+ family=binomial(),data=nuclear)\$linear.predictors
> pscorediffs <- function(trtvar,data) {
+ pscr <- data[names(trtvar), 'pscore']
+ abs(outer(pscr[trtvar],pscr[!trtvar], '_'))
+ }
> psd2 <- makedist(pr~pt, nuclear, pscorediffs)
> fullmatch(psd2)
> fullmatch(psd2, min.controls=1, max.controls=3)
> fullmatch(psd2, min=1, max=c('0'=3, '1'=2))

```

Jake Bowers' and my RItools package provides diagnostics...

Agresti, A. (2002), Categorical data analysis, John Wiley \& Sons.
Augursky, B. and Kluve, J. (2004), "Assessing the performance of matching algorithms when selection into treatment is strong," Tech. rep., RWI-Essen.
Cox, D. R. and Snell, E. J. (1989), Analysis of binary data, Chapman \& Hall Ltd.
Hansen, B. B. (2004), "Full matching in an observational study of coaching for the SAT," Journal of the American Statistical Association, 99, 609-618.
- (2005), OPTMATCH, an add-on package for R.

Hansen, B. B. and Klopfer, S. O. (2005), "Optimal full matching and related designs via network flows," Tech. Rep. 416, Statistics Department, University of Michigan.
Raudenbush, S. W. and Bryk, A. S. (2002), Hierarchical Linear Models: Applications and Data Analysis Methods, Sage Publications Inc.
Rosenbaum, P. R. (1991), "A Characterization of Optimal Designs for Observational Studies," Journal of the Royal Statistical Society, 53, 597-610.
- (2002a), "Attributing effects to treatment in matched observational studies," Journal of the American Statistical Association, 97, 183-192.
- (2002b), "Covariance adjustment in randomized experiments and observational studies," Statistical Science, 17, 286-327
- (2002c), Observational Studies, Springer-Verlag, 2nd ed.

Rubin, D. B. (1979), "Using Multivariate Matched Sampling and Regression Adjustment to Control Bias in Observational Studies," Journal of the American Statistical Association, 74, 318-328.
Smith, H. (1997), "Matching with Multiple Controls to Estimate Treatment Effects in Observational Studies," Sociological Methodology, 27, 325-353.

\section*{Modes of estimation for treatment effects}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Preferred mode of inference} & \multicolumn{2}{|r|}{Type of outcome} \\
\hline & Categorical & Continuous \\
\hline \multirow[t]{2}{*}{Randomization} & \begin{tabular}{lr} 
Agresti & (2002), \\
Categorical & Data
\end{tabular} & \begin{tabular}{ll} 
Rosenbaum & \((2002 \mathrm{c})\), \\
Observational & Studies;
\end{tabular} \\
\hline & \begin{tabular}{lr}
\hline Analysis; \begin{tabular}{r} 
Rosenbaum \\
"Atributing
\end{tabular} \\
effects to treatment ..."
\end{tabular} & Rosenbaum (2002b), "Covariance adjustment ...." \\
\hline Conditional \({ }^{\text {a }}\) & Agresti (2002); Cox and Snell (1989), Analysis of binary data & ordinary \(\mathrm{OLS}^{b}\) is fine; see also Rubin (1979), "Using multivariate matched. . .." \\
\hline Bayes, esp. hierarchical linear models & Agresti (2002) & Smith (1997), "Matching with multiple controls..."; Raudenbush and Bryk (2002), Hierarchical linear models \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) Uses a fixed effect for each matched set.
\({ }^{b_{i . e .}}\)., OLS with a fixed effect for each matched set plus treatment effect(s)
\({ }^{c}\) Uses a random effect for each matched set.
}```


[^0]:    ${ }^{1}$ Discussed in Hansen and Klopfer (2005), Hansen (2004)

[^1]:    ${ }^{2}$ (Rosenbaum, 1991; Hansen and Klopfer, 2005)

[^2]:    ${ }^{2}$ (Rosenbaum, 1991; Hansen and Klopfer, 2005)

[^3]:    ${ }^{2}$ (Rosenbaum, 1991; Hansen and Klopfer, 2005)

[^4]:    ${ }^{3}$ (Hansen and Klopfer, 2005, Fig. 2). Time complexity of the algorithm is $O\left(n^{3} \log (n \max (\right.$ dist $\left.))\right)$.

