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Outline

Optimal matching of two groups
Comparing nuclear plants: an illustration

Generalizations of pair matching

The R implementation

Existing site
date capacity

A 2.3 660
B 3.0 660
C 3.4 420
D 3.4 130
E 3.9 650
F 5.9 430
G 5.1 420

“date” is date of construction, in

years after 1965; “capacity” is net ca-

pacity of the power plant, in MWe

above 400.

New site
date capacity

H 3.6 290
I 2.3 660
J 3.0 660
K 2.9 110
L 3.2 420
M 3.4 60
N 3.3 390
O 3.6 160
P 3.8 390
Q 3.4 130
R 3.9 650
S 3.9 450
T 3.4 380
U 4.5 440
V 4.2 690
W 3.8 510
X 4.7 390
Y 5.4 140
Z 6.1 730
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Example: 1:2 matching by a
traditional, greedy algorithm.
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New and refurbished nuclear plants: discrepancies in
capacity and year of construction

Exist- New sites
ing H I J K L M N O P Q R S T U V W X Y Z

A 28 0 3 22 14 30 17 28 26 28 20 22 23 26 21 18 34 40 28
B 24 3 0 22 10 27 14 26 24 24 16 19 20 23 18 16 31 37 25
C 10 18 14 18 4 12 6 11 9 10 14 12 6 14 22 10 16 22 28
D 7 28 24 8 14 2 10 6 12 0 24 22 4 24 32 20 18 16 38
E 17 20 16 32 18 26 20 18 12 24 0 2 20 6 8 4 14 20 14
F 20 31 28 35 20 29 22 20 14 26 12 9 22 5 15 12 9 11 12
G 14 32 29 30 18 24 17 16 10 22 12 10 17 6 16 14 4 8 17

Existing site
date capacity

A 2.3 660
B 3.0 660
C 3.4 420
D 3.4 130
E 3.9 650
F 5.9 430
G 5.1 420

Optimal vs. Greedy matching

By evaluating potential matches all

together rather than sequentially, op-

timal matching (blue lines) reduces

the sum of distances from 82 to 63.
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Introducing restrictions on who can be matched to
whom: calipers

In the nuclear plants example, suppose we choose to insist
upon a caliper of three years in the date of construction. This
would forbid five potential matches, indicated below in red.

Exist- New sites
ing H I J K L M N O P Q R S T U V W X Y Z

A 28 0 3 22 14 30 17 28 26 28 20 22 23 26 21 18 34 40 28
B 24 3 0 22 10 27 14 26 24 24 16 19 20 23 18 16 31 37 25
C 10 18 14 18 4 12 6 11 9 10 14 12 6 14 22 10 16 22 28
D 7 28 24 8 14 2 10 6 12 0 24 22 4 24 32 20 18 16 38
E 17 20 16 32 18 26 20 18 12 24 0 2 20 6 8 4 14 20 14
F 20 31 28 35 20 29 22 20 14 26 12 9 22 5 15 12 9 11 12
G 14 32 29 30 18 24 17 16 10 22 12 10 17 6 16 14 4 8 17

Introducing restrictions on who can be matched to
whom: calipers

With optmatch, matches are forbidden by placing ∞’s in the
distance matrix.

Exist- New sites
ing H I J K L M N O P Q R S T U V W X Y Z

A 28 0 3 22 14 30 17 28 26 28 20 22 23 26 21 18 34 Inf Inf
B 24 3 0 22 10 27 14 26 24 24 16 19 20 23 18 16 31 37 Inf
C 10 18 14 18 4 12 6 11 9 10 14 12 6 14 22 10 16 22 28
D 7 28 24 8 14 2 10 6 12 0 24 22 4 24 32 20 18 16 38
E 17 20 16 32 18 26 20 18 12 24 0 2 20 6 8 4 14 20 14
F 20 Inf 28 Inf 20 29 22 20 14 26 12 9 22 5 15 12 9 11 12
G 14 32 29 30 18 24 17 16 10 22 12 10 17 6 16 14 4 8 17
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Optimal matching of two groups
Comparing nuclear plants: an illustration

Generalizations of pair matching

The R implementation

Example # 2: Gender equity study for research
scientists1

Women and men scientists are to be matched on grant funding.

Women Men
Subject log10(Grant) Subject log10(Grant)

A 5.7 V 5.5
B 4.0 W 5.3
C 3.4 X 4.9
D 3.1 Y 4.9

Z 3.9

1Discussed in Hansen and Klopfer (2005), Hansen (2004)



Full Matching2 the Gender Equity Sample

Women Men
Subject log10(Grant) Subject log10(Grant)

A 5.7 V 5.5
B 4.0 W 5.3
C 3.4 X 4.9
D 3.1 Y 4.9

Z 3.9

◮ Similar to matching with replacement, but creates disjoint
matched sets — better for tests & CIs.

◮ In contrast to pair matching, it finds matches for everyone
with a suitable counterpart.

◮ In contrast to multiple controls matching, it doesn’t force
poor matches.

◮ In optmatch, can be combined with structural restrictions.
2(Rosenbaum, 1991; Hansen and Klopfer, 2005)
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Under the hood
Full matching via network flows3
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3(Hansen and Klopfer, 2005, Fig. 2). Time complexity of the algorithm is
O(n3 log(n max(dist))).

Arguments to fullmatch()

distance The argument demanding most attention from the
user, b/c it defines “good” matches and because
very large distance matrices can tax R’s memory
limits. A new helper function, makedist(), eases
both of these efforts.

min.controls, max.controls In propensity matching, can be
important for efficiency — see Hansen (2004),
Augursky and Kluve (2004).

omit.fraction for use in matched sampling (as opposed to
matching all or most of a sample). Not needed for
getting rid of subjects without suitable potential
matches. If you’re not specifically out to reduce the
size of the control group, can be ignored.
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Summary

◮ With optmatch, R offers the most comprehensive optimal
matching implementation for statistics.

◮ fullmatch() solves optimally such traditional problems
as matched sampling, pair matching, and matching with k
controls.

◮ fullmatch() can also solve matching problems flexibly,
and far more effectively, by way of full matching, with or
without structural restrictions (Hansen and Klopfer, 2005;
Hansen, 2004).

◮ The effort required to code optimal and full matching
algorithms seems to have dissuaded their widespread use.
Now that I’ve made that effort, perhaps this situation can
change! :)
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Example with propensity scores and stratification prior
to matching

>nuclear$pscore <- glm(pr~.-cost,
+ family=binomial(),data=nuclear)$linear.predictors

> pscorediffs <- function(trtvar,data) {
+ pscr <- data[names(trtvar), ’pscore’]
+ abs(outer(pscr[trtvar],pscr[!trtvar], ’-’))
+ }

> psd2 <- makedist(pr~pt, nuclear, pscorediffs)

> fullmatch(psd2)

> fullmatch(psd2, min.controls=1, max.controls=3)
> fullmatch(psd2, min=1, max=c(’0’=3, ’1’=2))

Jake Bowers’ and my RItools package provides
diagnostics. . .
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Modes of estimation for treatment effects
Preferred Type of outcome
mode of infer-
ence

Categorical Continuous

Randomization Agresti (2002),
Categorical Data
Analysis; Rosenbaum
(2002a), “Atributing
effects to treatment . . . ”

Rosenbaum (2002c),
Observational Studies;
Rosenbaum (2002b), “Cov-
ariance adjustment . . . .”

Conditional a Agresti (2002); Cox and
Snell (1989), Analysis of
binary data

ordinary OLSb is fine; see
also Rubin (1979), “Using
multivariate matched. . . .”

Bayes, esp.
hierarchical
linear models
c

Agresti (2002) Smith (1997), “Matching
with multiple controls. . . ”;
Raudenbush and Bryk
(2002), Hierarchical linear
models

aUses a fixed effect for each matched set.
bi.e., OLS with a fixed effect for each matched set plus treatment

effect(s)
cUses a random effect for each matched set.


