Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models

Sylvia Frühwirth-Schnatter and Christoph Pamminger

Department of Applied Statistics and Econometrics Johannes Kepler University Linz, Austria **Collaboration** with Rudolf **Winter-Ebmer**, Department of Economics, Johannes Kepler University Linz

Supported by the **Austrian Science Foundation** (FWF) under grant P 17 959 ("Gibbs Sampling for Discrete Data")

 $UseR! \ 2006 - p. \ 1$

Outline

Clustering

Motivating Example

- Research Question
- Data Description

Markov Chain Model

Dirichlet Multinomial Model

- Bayesian Analysis
- MCMC-Estimation

Estimation Results

Clustering

Clustering is a widely used statistical tool to determine subsets

Frequently used clustering methods are based on **distance-measures**

However, distance-measures are **difficult** to define for more **complex** data (e.g. time series)

⇒ Model-based clustering methods (mixture models)

We present an approach for **model-based clustering of discrete-valued time series data** following ideas discussed in Frühwirth-Schnatter and Kaufmann (2004)

UseR! 2006 - p. 2

Motivating Example

Wage Mobility in the Austrian labor market

Describes **chances** but also **risks** of an individual **to move** between wage categories

Assumption of **different** career progressions or income careers of employees

Task: Find **groups** of employees with **similar** behavior in terms of transition probabilities (focus on one-year transitions)

Data provided by the Austrian social security authority

Illustration

Figure 1: Individual wage mobility time series of nine selected employees.

UseR! 2006 - p. 5

Data Description

Time series for N = 9,809 individuals (only men, because of data inconsistencies with e.g. female part-time workers)

Gross **monthly wage** at May of successive years (with individual length T_i) divided into **6 categories** corresponding to quintiles of the particular income distribution (1-5) and zero-income (0) according to Weber (2002)

 \rightarrow **y**_i = (y_{i0}, y_{i1}, y_{i2}, ..., y_{it}, ..., y_{i,T_i}), i = 1, ..., N

Income careers of the first four employees in the data set

[1]
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

 $UseR! \ 2006 - p. \ 6$

Markov Chain Model

 $\begin{aligned} y_{it} &= k \quad \text{if subject } i \in \{1, \dots, N\} \text{ belongs to wage category} \\ & k \in \{0, 1, \dots, K\} \text{ in year } t \in \{0, \dots, T_i\} \end{aligned}$

Markov chain y_i is modeled with a (time-homogeneous) Markov process with unknown transition matrix ξ , where

$$\xi_{jk} = \mathsf{P}\{y_{it} = k | y_{i,t-1} = j\} \quad \text{and} \quad \sum_{k=0}^{\infty} \xi_{jk} = 1$$
$$\boldsymbol{\xi} = \begin{pmatrix} \boldsymbol{\xi}_0 \\ \boldsymbol{\xi}_1 \\ \vdots \\ \boldsymbol{\xi}_{K} \end{pmatrix} = \begin{pmatrix} \xi_{00} & \xi_{01} & \cdots & \xi_{0K} \\ \xi_{10} & \xi_{11} & \cdots & \xi_{1K} \\ \vdots & \ddots & \vdots \\ \xi_{K0} & \xi_{K1} & \cdots & \xi_{KK} \end{pmatrix}$$

UseR! 2006 - p. 8

Bayesian Analysis

Prior-distribution of $\boldsymbol{\xi}_{j}$, $j = 0, \dots, K$:

$$\boldsymbol{\xi}_{j} \, \cdot \sim \mathcal{D}(e_{0,j0}, \ldots, e_{0,jK}).$$

Posterior-distribution of ξ_{i} .

$$\boldsymbol{\xi}_{j} \sim \mathcal{D}(e_{N,j0}, \dots, e_{N,jK}) \quad \text{with} \quad e_{N,jk} = e_{0,jk} + N_{jk},$$

where $N_{jk} = \#\{y_{it} = k, y_{i,t-1} = j\}$ is the number of transitions from state j to state k over **all** subjects $i = 1, \ldots, N$

 $\Rightarrow \boldsymbol{\xi} \sim \mathsf{product} \text{ of } (K+1 \text{ indep.}) \mathcal{D}$ irichlet-distributions

Modeling Hidden Groups

Assumptions and notations

- H hidden groups with group-specific transition matrices ξ_h, h = 1,..., H
- Individual transition matrices $\boldsymbol{\xi}_{i}^{s}$, $i = 1, \dots, N$
- Latent indicator variable $S = (S_1, ..., S_N)$ for group membership: $S_i = h$, if subject *i* belongs to group *h*
- Relative group sizes $\eta = (\eta_1, \dots, \eta_H)$: P $\{S_i = h | \eta\} = \eta_h, h = 1, \dots, H$

 $UseR! \ 2006 - p. \ 10$

UseR! 2006 – p. 9

Modeling Heterogeneity

1. Simple model:

 $\boldsymbol{\xi}_i^s | (S_i = h) = \boldsymbol{\xi}_h \quad \text{(fixed)}$

 $\Rightarrow \boldsymbol{\xi}_h | \mathbf{S} \sim \text{product of } (K+1 \text{ indep.}) \text{ Dirichlet-distributions}$

- 2. Apply a **multinomial logit model with random effects** (Rossi et al., 2005). High-parametrical model including high-dimensional covariance matrices
- 3. Dirichlet Multinomial Model:

$$\boldsymbol{\xi}_{i,j}^{s}|(S_{i}=h) \sim \mathcal{D}(e_{h,j0},\ldots,e_{h,jK})$$

with group-specific parameter $\mathbf{e}_h = \{\mathbf{e}_{h,j}\}, j = 0, \dots, K$

Dirichlet Multinomial Model

Group-specific transition matrix $\boldsymbol{\xi}_h$ is given by

$$\xi_{h,jk} = E(\xi_{i,jk}^{s} | S_i = h, \mathbf{e}_h) = \frac{e_{h,jk}}{\sum_{k=0}^{K} e_{h,jk}}$$

So each row of \mathbf{e}_h determines the corresponding row of $\boldsymbol{\xi}_h$

Finite mixture model representation:

 $\mathbf{Y}_i \sim p_h(\mathbf{y}_i | \mathbf{e}_h) \dots$ product of K + 1 Dirichlet-distributions

Unconditional density:

$$p(\mathbf{Y}_i|\mathbf{e}_1,\ldots,\mathbf{e}_H) = \sum_{h=1}^H \eta_h p_h(\mathbf{y}_i|\mathbf{e}_h)$$

Group-specific parameter e_h

The variance of $\xi_{i,jk}^s$ is given by

 $Var(\xi_{i,jk}^{s}|S_{i} = h, \mathbf{e}_{h}) = \xi_{h,jk}^{2} \cdot \frac{\sum_{l \neq k} e_{h,jl}}{\sum_{k=0}^{K} e_{h,jk} \cdot \left(1 + \sum_{k=0}^{K} e_{h,jk}\right)}$

If $\sum_{k=0}^{K} e_{h,jk}$ is very **large** (for each row in each group) \rightarrow amount of heterogeneity (in each group) is small \Rightarrow leads to the simple model with fixed ξ_h

If $\sum_{k=0}^{K} e_{h,jk}$ is **small** \Rightarrow the individual transition matrices are allowed to **deviate** from the group mean within each group

Bayesian Analysis

Prior-assumptions:

- All e_{h,j}. are *independent* and e_{h,j}. − 1 ≥ 0 (to avoid problems with empty groups and non-informative priors)
- $\mathbf{e}_{h,j}$. -1 is a *discrete*-valued multivariate random variable
- $\mathbf{e}_{h,j} 1 \sim \text{negative multinomial distribution}$
- $\eta \sim$ Dirichlet-distribution

All parameters e_1, \ldots, e_H , S, η are jointly **estimated** by means of MCMC-Sampling

UseR! 2006 – p. 13

MCMC-Estimation (Gibbs Sampler)

Choose initial values for η and e_1, \ldots, e_H (*H* fixed in advance) and repeat following steps ($m = 1, \ldots, M$):

- 1. **Bayes-classification** for each subject *i*: draw $S_i^{(m)}$ from $p(S_i | \mathbf{v}_i, \boldsymbol{\eta}^{(m-1)}, \mathbf{e}_1^{(m-1)}, \dots, \mathbf{e}_{H}^{(m-1)})$.
- 2. sample **Group sizes** η :

draw $\boldsymbol{\eta}^{(m)}$ from $\mathcal{D}(\alpha_1^{(m)}, \dots, \alpha_H^{(m)})$ with $\alpha_h^{(m)} = N_h^{(m)} + \alpha_0$ and $N_h^{(m)} = \#\{S_i^{(m)} = h\}.$

3. sample group-specific parameters $\mathbf{e}_1, \ldots, \mathbf{e}_H$: draw $\mathbf{e}_{h,j}^{(m)}$ row-by-row from $p(\mathbf{e}_{h,j}, |\mathbf{y}, \mathbf{S}^{(m)})$ (not of closed form!) using a **Metropolis-Hastings step** (with discrete random walk proposal).

Estimation Results

Here we show the results for **3 groups** which allow very sensible interpretations according to our economist (M = 10,000 with 2,000 burn-in)

- Transition probabilities
- Typical group members
- Classification probabilities
- Equilibrium distributions

 $UseR! \ 2006 - p. \ 14$

Transition Probabilities

S = 1 (0.2152)					S = 2 (0.2487)						S = 3 (0.5361)									
ti ti.1	0	1	2	3	4	5	ti ti.1	0	1	2	3	4	5	ti ti.1	0	1	2	3	4	5
0	\bigcirc	•	•	۰	۰	۰	0	\bigcirc	•	0	۰	٠	۰	0	•	\bigcirc	\bigcirc	0	•	•
1	•	\bigcirc	•	۰	0	•	1	•	\bigcirc	0	•	•	۰	1	0	\bigcirc	•	•	۰	۰
2	•	•	•	•	۰	۰	2	•	•	\bigcirc	•	۰	۰	2	•	•	\bigcirc	•	٥	٥
3	•	۰	۰	\bigcirc	•	۰	3	•	0	•	\bigcirc	•	•	3	0	۰	•	\bigcirc	0	۰
4	•	۰	۰	•	ightarrow	•	4	•	0	0	•	\bigcirc	•	4	0	۰	٠	0	\bigcirc	•
5	•	•	•	•	•	\bigcirc	5	•	۰	0	٥	۰	\bigcirc	5	۰	•	•	•	0	\bigcirc

Figure 2: 3D-Visualizations of transition probabilities $\hat{\xi}_h$ (volumes of balls are proportional to probs) and estimated group sizes $\hat{\eta}$ indicated in brackets (posterior means).

Figure 5: Selected typical group members (with high classification

UseR! 2006 - p. 17

Classification Probabilities

$i \backslash h$	1	2	3
1	0.00016	0.35852	0.64132
2	0.01319	0.98676	0.00005
3	0.13440	0.25522	0.61039
4	0.34690	0.00462	0.64848
5	0.00035	0.99965	0.00000
6	0.13326	0.86632	0.00042
7	0.00011	0.99989	0.00000
8	0.81248	0.18748	0.00004
9	0.00008	0.99992	0.00000
10	0.05821	0.18316	0.75863
		:	
9809	0.51099	0.29038	0.19863

Equilibrium Distributions

$j \backslash h$	1	2	3
0	0.25028	0.60154	0.03993
1	0.22435	0.10482	0.10655
2	0.13299	0.06598	0.13688
3	0.14742	0.03524	0.16979
4	0.15030	0.03786	0.23205
5	0.09466	0.15456	0.31480

Table 2: Equilibrium distributions in each group.

UseR! 2006 - p. 18

Open Problem

Further research has to be done to find **formal criterions** to determine the number of groups.

Possible approaches:

- Model selection based on marginal likelihoods
- Classification likelihood information criterion (using entropy)
- Integrated classification likelihood

Summary

- Discrete-valued time series
- Categorical variable
- Markov chains
- Individual transition matrices
- Dirichlet multinomial model (allows for heterogeneity within groups): mixture model with (products of) Dirichlet-distributions
- with group-specific parametersEstimation via MCMC (number of groups fixed)
- \rightarrow Group-specific transition matrices

 $UseR! \ 2006 - p. \ 21$

References

Frühwirth-Schnatter, Sylvia (2006). Finite Mixture and Markov Switching Models. Springer Series in Statistics. New York: Springer (to appear).

Frühwirth-Schnatter, Sylvia and **Kaufmann**, Sylvia (2004). Model-Based Clustering of Multiple Time Series. IFAS Research Paper Series, 2004-02, http://www.ifas.jku.at/.

Rossi, Peter E., **Allenby**, Greg and **McCulloch**, Rob (2005). Bayesian Statistics and Marketing. John Wiley and Sons.

Weber, Andrea (2002). State Dependence and Wage Dynamics: A Heterogeneous Markov Chain Model for Wage Mobility in Austria, Economics Series 114, Institute for Advanced Studies.