Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models

Sylvia Frühwirth-Schnatter and Christoph Pamminger
Department of Applied Statistics and Econometrics Johannes Kepler University Linz, Austria

Collaboration with Rudolf Winter-Ebmer,

Department of Economics, Johannes Kepler University Linz
Supported by the Austrian Science Foundation (FWF)
under grant P 17959 ("Gibbs Sampling for Discrete Data")

Outline

Clustering

Motivating Example

- Research Question
- Data Description

Markov Chain Model

Dirichlet Multinomial Model

- Bayesian Analysis
- MCMC-Estimation

Estimation Results

Clustering

Clustering is a widely used statistical tool to determine subsets

Frequently used clustering methods are based on distance-measures

However, distance-measures are difficult to define for more complex data (e.g. time series)
\Rightarrow Model-based clustering methods (mixture models)
We present an approach for model-based clustering of discrete-valued time series data following ideas discussed in Frühwirth-Schnatter and Kaufmann (2004)

Motivating Example

Wage Mobility in the Austrian labor market
Describes chances but also risks of an individual to move between wage categories

Assumption of different career progressions or income careers of employees

Task: Find groups of employees with similar behavior in terms of transition probabilities (focus on one-year transitions)

Data provided by the Austrian social security authority

Illustration

Data Description
Time series for $N=9,809$ individuals (only men, because of data inconsistencies with e.g. female part-time workers)

Gross monthly wage at May of successive years (with individual length T_{i}) divided into $\mathbf{6}$ categories corresponding to quintiles of the particular income distribution (1-5) and zero-income (0) according to Weber (2002)
$\rightarrow \mathbf{y}_{i}=\left(y_{i 0}, y_{i 1}, y_{i 2}, \ldots, y_{i t}, \ldots, y_{i, T_{i}}\right), i=1, \ldots, N$
Income careers of the first four employees in the data set

$[1]$	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
$[2]$	1	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4	4
$[3]$	4	0	0	1	0	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	1	0	5
$[4]$	3	2	3	5	4	4	4	4	5	5	2	3	3	2	3	3	3	4	4	4	4	4	4	4	4	4

Markov Chain Model

$y_{\text {it }}=k$ if subject $i \in\{1, \ldots, N\}$ belongs to wage category $k \in\{0,1, \ldots, K\}$ in year $t \in\left\{0, \ldots, T_{i}\right\}$

Markov chain \mathbf{y}_{i} is modeled with a (time-homogeneous)
Markov process with unknown transition matrix $\boldsymbol{\xi}$, where

$$
\begin{gathered}
\xi_{j k}=\mathrm{P}\left\{y_{i t}=k \mid y_{i, t-1}=j\right\} \quad \text { and } \quad \sum_{k=0}^{K} \xi_{j k}=1 \\
\boldsymbol{\xi}=\left(\begin{array}{c}
\boldsymbol{\xi}_{0} \\
\boldsymbol{\xi}_{1} \cdot \\
\vdots \\
\boldsymbol{\xi}_{K} .
\end{array}\right)=\left(\begin{array}{cccc}
\xi_{00} & \xi_{01} & \cdots & \xi_{0 K} \\
\xi_{10} & \xi_{11} & \cdots & \xi_{1 K} \\
\vdots & & \ddots & \vdots \\
\xi_{K 0} & \xi_{K 1} & \cdots & \xi_{K K}
\end{array}\right)
\end{gathered}
$$

Figure 1: Individual wage mobility time series of nine selected employees.

Bayesian Analysis

Prior-distribution of $\boldsymbol{\xi}_{j,}, j=0, \ldots, K$:

$$
\boldsymbol{\xi}_{j} \sim \mathcal{D}\left(e_{0, j 0}, \ldots, e_{0, j K}\right)
$$

Posterior-distribution of $\boldsymbol{\xi}_{j}$. :

$$
\boldsymbol{\xi}_{j .} \sim \mathcal{D}\left(e_{N, j 0}, \ldots, e_{N, j K}\right) \quad \text { with } \quad e_{N, j k}=e_{0, j k}+N_{j k},
$$

where $N_{j k}=\#\left\{y_{i t}=k, y_{i, t-1}=j\right\}$ is the number of transitions from state j to state k over all subjects $i=1, \ldots, N$
$\Rightarrow \boldsymbol{\xi} \sim$ product of ($K+1$ indep.) Dirichlet-distributions

Modeling Hidden Groups

Assumptions and notations

- H hidden groups with group-specific transition matrices $\xi_{h}, h=1, \ldots, H$
- Individual transition matrices $\boldsymbol{\xi}_{i}^{s}, i=1, \ldots, N$
- Latent indicator variable $\mathbf{S}=\left(S_{1}, \ldots, S_{N}\right)$ for group membership: $S_{i}=h$, if subject i belongs to group h
- Relative group sizes $\boldsymbol{\eta}=\left(\eta_{1}, \ldots, \eta_{H}\right)$: $\mathrm{P}\left\{S_{i}=h \mid \boldsymbol{\eta}\right\}=\eta_{h}, h=1, \ldots, H$

Dirichlet Multinomial Model

Group-specific transition matrix ξ_{h} is given by

$$
\xi_{h, j k}=E\left(\xi_{i, j k}^{s} \mid S_{i}=h, \mathbf{e}_{h}\right)=\frac{e_{h, j k}}{\sum_{k=0}^{K} e_{h, j k}}
$$

So each row of e_{h} determines the corresponding row of ξ_{h}

Finite mixture model representation:
$\mathbf{Y}_{i} \sim p_{h}\left(\mathbf{y}_{i} \mid \mathbf{e}_{h}\right) \ldots$ product of $K+1$ Dirichlet-distributions
Unconditional density:

$$
p\left(\mathbf{Y}_{i} \mid \mathbf{e}_{1}, \ldots, \mathbf{e}_{H}\right)=\sum_{h=1}^{H} \eta_{h} p_{h}\left(\mathbf{y}_{i} \mid \mathbf{e}_{h}\right)
$$

Group-specific parameter e_{h}

The variance of $\xi_{i, j k}^{s}$ is given by

$$
\operatorname{Var}\left(\xi_{i, j k}^{s} \mid S_{i}=h, \mathbf{e}_{h}\right)=\xi_{h, j k}^{2} \cdot \frac{\sum_{l \neq k} e_{h, j l}}{\sum_{k=0}^{K} e_{h, j k} \cdot\left(1+\sum_{k=0}^{K} e_{h, j k}\right)}
$$

If $\sum_{k=0}^{K} e_{h, j k}$ is very large (for each row in each group) \rightarrow amount of heterogeneity (in each group) is small \Rightarrow leads to the simple model with fixed $\boldsymbol{\xi}_{h}$

If $\sum_{k=0}^{K} e_{h, j k}$ is small \Rightarrow the individual transition matrices are allowed to deviate from the group mean within each group

Bayesian Analysis

Prior-assumptions:

- All $\mathbf{e}_{h, j}$. are independent and $\mathbf{e}_{h, j} .-1 \geq 0$ (to avoid problems with empty groups and non-informative priors)
- $\mathbf{e}_{h, j} .-1$ is a discrete-valued multivariate random variable
- $\mathbf{e}_{h, j}$. $-1 \sim$ negative multinomial distribution
- $\boldsymbol{\eta} \sim$ Dirichlet-distribution

All parameters $\mathbf{e}_{1}, \ldots, \mathbf{e}_{H}, \mathbf{S}, \boldsymbol{\eta}$ are jointly estimated by means of MCMC-Sampling

Estimation Results

Here we show the results for $\mathbf{3}$ groups which allow very sensible interpretations according to our economist ($M=$ 10,000 with 2,000 burn-in)

- Transition probabilities
- Typical group members
- Classification probabilities
- Equilibrium distributions

Transition Probabilities

$\mathrm{S}=1$ (0.2152)						
$\mathrm{ti}_{\mathrm{t} .1} 1^{\mathrm{t}}$	0	1	2	3	4	5
0	\bigcirc	\bigcirc	-	-	-	-
1	\bigcirc	\bigcirc	-	-	-	-
2	-	\bigcirc	\bigcirc	\bigcirc	-	-
3	-	-	-	\bigcirc	\bigcirc	-
4	-	-	-	-	\bigcirc	\bigcirc
5	-	-	-	-	\bigcirc	\bigcirc

Figure 2: 3D-Visualizations of transition probabilities $\hat{\boldsymbol{\xi}}_{h}$ (volumes of balls are proportional to probs) and estimated group sizes $\hat{\boldsymbol{\eta}}$ indicated in brackets (posterior means).

Classification Probabilities

$i \backslash h$	1	2	3
1	0.00016	0.35852	0.64132
2	0.01319	0.98676	0.00005
3	0.13440	0.25522	0.61039
4	0.34690	0.00462	0.64848
5	0.00035	0.99965	0.00000
6	0.13326	0.86632	0.00042
7	0.00011	0.99989	0.00000
8	0.81248	0.18748	0.00004
9	0.00008	0.99992	0.00000
10	0.05821	0.18316	0.75863
		\vdots	
9809	0.51099	0.29038	0.19863

Table 1: Classification probabilities for each individual.

Typical Group Members

Figure 3: Selected typical group members (with high classification prob).

Equilibrium Distributions

$j \backslash h$	1	2	3
0	0.25028	0.60154	0.03993
1	0.22435	0.10482	0.10655
2	0.13299	0.06598	0.13688
3	0.14742	0.03524	0.16979
4	0.15030	0.03786	0.23205
5	0.09466	0.15456	0.31480

Table 2: Equilibrium distributions in each group.

Open Problem

Further research has to be done to find formal criterions to determine the number of groups.

Possible approaches:

- Model selection based on marginal likelihoods
- Classification likelihood information criterion (using entropy)
- Integrated classification likelihood

Summary

- Discrete-valued time series
- Categorical variable
- Markov chains
- Individual transition matrices
- Dirichlet multinomial model (allows for heterogeneity within groups):
mixture model with (products of) Dirichlet-distributions with group-specific parameters
- Estimation via MCMC (number of groups fixed)
- \rightarrow Group-specific transition matrices

References

Frühwirth-Schnatter, Sylvia (2006). Finite Mixture and Markov Switching Models. Springer Series in Statistics. New York: Springer (to appear).

Frühwirth-Schnatter, Sylvia and Kaufmann, Sylvia (2004).
Model-Based Clustering of Multiple Time Series. IFAS
Research Paper Series, 2004-02, http://www.ifas.jku.at/.
Rossi, Peter E., Allenby, Greg and McCulloch, Rob (2005). Bayesian Statistics and Marketing. John Wiley and Sons.

Weber, Andrea (2002). State Dependence and Wage Dynamics: A Heterogeneous Markov Chain Model for Wage Mobility in Austria, Economics Series 114, Institute for Advanced Studies.

