Outlier Detection with Application to Geochemistry

Peter Filzmoser

Department of Statistics and Probability Theory Vienna University of Technology, Austria

Vienna, Austria
June 16, 2006

$\overline{\text { Vienna University of Technology }}$

Univariate versus Multivariate Outliers

Univariate versus Multivariate Outliers
TU

Standard methods are based on the Mahalanobis distances (MD):

$$
\mathrm{MD}_{i}:=d\left(\boldsymbol{x}_{i}, \boldsymbol{t}, \boldsymbol{C}\right)=\left\{\left(\boldsymbol{x}_{i}-\boldsymbol{t}\right)^{\top} \boldsymbol{C}^{-1}\left(\boldsymbol{x}_{i}-\boldsymbol{t}\right)\right\}^{1 / 2}
$$

for a sample $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{p}$ and estimators of location \boldsymbol{t} and covariance \boldsymbol{C}.

\Longrightarrow Robust estimates of location and covariance are needed!

Outlier detection:

Outliers will typically have large distance. If multivariate normal distribution is assumed, MD_{i}^{2} is approx. χ_{p}^{2} distributed.
\Longrightarrow suspect observations: $\mathrm{MD}_{i}^{2}>\chi_{p, 0.975}^{2}$

- does not account for different sample size
- χ_{p}^{2}-approximation is poor

Example: Simulated data with outliers

Chi-square plot:

Plot robust MD_{i}^{2} against quantiles of χ_{p}^{2}.
\Longrightarrow iterative deletion of points with large distance until a straight line appears.

Drawback: no automatic procedure, needs user interaction.

Chi^2-Plot

Iterative deletion of outliers:

Iterative deletion of outliers:

Iterative deletion of outliers:

Iterative deletion of outliers:

Simulated Data Example

$G(u) \ldots$ theoretical distribution function of χ_{p}^{2}, $G_{n}(u) \ldots$ empirical distribution function of MD_{i}^{2}

For $\eta=\chi_{p, 1-\alpha}^{2}$ define

$$
p_{n}(\eta)=\sup _{u \geq \eta}^{u \geq}\left\{G(u)-G_{n}(u)\right\}^{+} .
$$

Then a measure of outliers in the sample is

$$
\alpha_{n}(\eta)=\left\{\begin{array}{lll}
0 & \text { if } \quad p_{n}(\eta) \leq p_{\text {crit }}(\eta, n, p) \\
p_{n}(\eta) & \text { if } \quad p_{n}(\eta)>p_{\text {crit }}(\eta, n, p)
\end{array}\right.
$$

$p_{\text {crit }}(\eta, n, p)$ can be obtained by simulations.

Example: Simulated Data

Outliers based on 97.5% quantile

Consider the O-horizon (organic surface soil) of the Kola data set.
Take (more or less) typical elements for "pollution":

$$
\text { As, } \mathrm{Cd}, \mathrm{Co}, \mathrm{Cu}, \mathrm{Mg}, \mathrm{~Pb}, \mathrm{Zn}
$$

Question: Where are the multivariate outliers?

Example: Map showing outliers

Choice of Symbols

Example: Symbols from multivariate plot
TU

Summary

includes

- all routines to generate the presented plots
- Kola data and other interesting geochemical data sets

