Term Structure and Credit Spread Estimation

Management Science Lab in Finance, 2005

M. Ablasser, J. Hayden, D. Kopp, C. Leitner, M. Schweitzer, R. Wittchen, A. Wurzer

June 15, 2006

Basic principles of bond pricing

- coupon bond which matures in *n* years
- investor gets at the times i = 1, ..., n coupon payments C and a redemption payment *R* at t = n
- clean price p_c is quoted on the market
- seller also receives accrued interest for holding the bond over the period since the last coupon payment

 $\frac{\text{number of days since last coupon}}{\text{number of days in current coupon period}} C$ a = -

- investor has to pay the **dirty price** p_d
- bond pricing equation with continuous compounding

$$p_c + a = C \sum_{i=1}^n e^{-s_i m_i} + R e^{-s_n m_n}$$

Robert Ferstl

1/9

2/9

Term Structure and Credit Spread Estimation Basic principles of bond pricing

yield to maturity

$$p_c + a = C \sum_{i=1}^n e^{-ym_i} + Re^{-ym_i}$$

Bobert Ferstl

- equivalent formulation of the bond price equation uses the discount factors $d_i = \delta(m_i) = e^{-s_i m_i}$
- continuous **discount function** $\delta(\cdot)$ is formed by interpolation of the discount factors

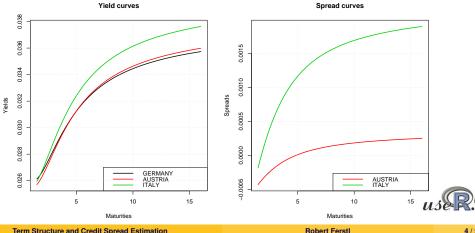
$$p_c + a = C \sum_{i=1}^n \delta(m_i) + \delta(m_n) K$$

• implied *j*-period forward rate

$$f_{t|j} = \frac{js_j - ts_t}{j - t}$$

• duration is a weighted average of time to cash flows

$$D = \frac{1}{p_c + a} \left[C \sum_{i=1}^n \delta(m_i) m_i + \delta(m_n) R m_n \right]$$

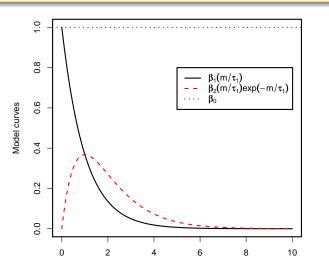

3/9

Term Structure and Credit Spread Estimation Term structure estimation

- estimate zero-coupon yield curves and credit spread curves from market data
- usual way for calculation of credit spread curves

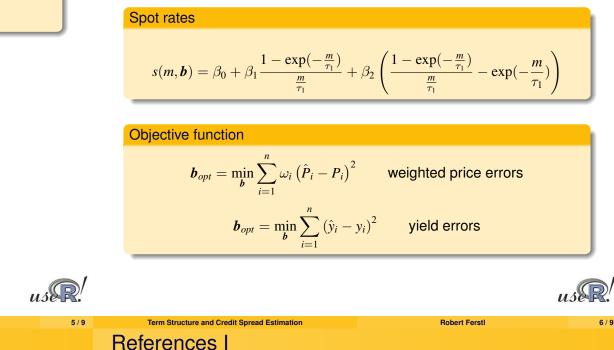
$$c_i(t) = s_i(t) - s_{ref}(t)$$

• parsimonious approach widely used by central banks



Robert Ferstl

Nelson and Siegel (1987) approach


Instantaneous forward rates

$$f(m, \boldsymbol{b}) = \beta_0 + \beta_1 \exp(-\frac{m}{\tau_1}) + \beta_2 \frac{m}{\tau_1} \exp(-\frac{m}{\tau_1})$$

Time to maturity

Nelson and Siegel (1987) approach

• Svensson (1994) extended the functional form by two additional parameters which allows for a second hump-shape

Instantaneous forward rates

Term Structure and Credit Spread Estimation

Extensions

$$f(m, b) = \beta_0 + \beta_1 \exp(-\frac{m}{\tau_1}) + \beta_2 \frac{m}{\tau_1} \exp(-\frac{m}{\tau_1}) + \beta_3 \frac{m}{\tau_2} \exp(-\frac{m}{\tau_2})$$

- simple calculation method of credit spread curves could lead to twisting curves
- Jankowitsch and Pichler (2004) proposed a joint estimation method, which leads to smoother and more realistic credit spread curves

- Bank for International Settlements Zero-coupon yield curves: technical documentation BIS Papers, No. 25, October 2005
- David Bolder, David Streliski Yield Curve Modelling at the Bank of Canada Bank of Canada, Technical Report, No. 84, 1999
- Alois Geyer, Richard Mader Estimation of the Term Structure of Interest Rates - A Parametric Approach OeNB, Working Paper, No. 37, 1999

7/9

Robert Ferstl

Bobert Ferstl

References II

- Rainer Jankowitsch, Stefan Pichler Parsimonious Estimation of Credit Spreads The Journal of Fixed Income, 14(3):49–63, 2004
- Charles R. Nelson, Andrew F. Siegel Parsimonious Modeling of Yield Curves *The Journal of Business*, 60(4):473–489, 1987
- Lars E.O. Svensson Estimating and Interpreting Forward Interest Rates: Sweden 1992 -1994 National Bureau of Economic Research, Technical Report, No. 4871, 1994

9/9

Term Structure and Credit Spread Estimation

Robert Ferstl